
1 Contour Methods

2 Introduction

In a variety of applications the data is available as a series of contours which represent the

cross section of a surface when sliced by the planes the contours reside in. The surface

construction algorithm determines the surface using the contours. This chapter examines

the existing algorithms and presents a new algorithm that has none of the short comings of

the existing algorithms. In Section 3 the simple triangulation methods are reviewed. These

methods only cope with cases where only one contour exists on each slice. The more general

case of many contours on each slice requires more complex algorithms which are the subject

of the review of Section 4. Section 5 shows how shapes (cones) can be �tted to the contours to

approximate them and aid the reconstruction process. Section 6 introduces the more general

problem of reconstruction from unorganised points, and �nally remarks on these sections

are given in Section 7, along with the identi�cation of major problems. A new algorithm

for surface reconstruction is presented in Section 8 that copes with the cases that create

diÆculties for other algorithms. The context of the problem is given in Section 9 and the

approach is described in Sections 10 and 11. The algorithm is tested on classical and real

problems in Section 12, and the results are discussed in Section 13. Finally the chapter is

concluded in Section 14.

3 Simple Triangulation

The original solution to the construction of surfaces from contour data is due to Keppel [1].

For this method the form the data takes is constrained to be an anti-clockwise sequence

of points on the contour. Each contour is a cross section of constant z with the points

having positions which are x; y values. Given this de�nition of the contour, the convexity and

concavity of any three successive points can be determined easily by drawing a circle with

an arc passing through the points. If the arc has positive curvature it is anti-clockwise and

convex, or if it has negative curvature it is clockwise and concave. Using this method the

concave and convex regions of the contour can be determined, and treated separately during

the tiling process.

Keppel points out that the tiling process must be guided somehow since it is impossible to

ennumerate every triangulation of successive contours. For two contours of 12 points each

there are around 107 triangulation combinations. In order to solve this problem, the contours

are represented by a graph (Figure 1), where each vertex in the graph represents a possible

span, and each edge is a triangular tile. Any tiling of the two contours is a path through the

graph, and the tiling chosen is one such that the path is a minimal cost path measured with

respect to some cost metric. A cost is associated with each edge in the graph which when

totalled over the path is an indication of how good the surface is with respect to the cost

metric.

The cost metric Keppel chooses to produce an optimal surface is known as maximise volume.

The idea is that each edge in the graph will represent the volume that triangle will add to

the surface by treating it as a face of a tetrahedron. The problem of concavities is solved by

trying to minimise the volume of the surface in those regions.

This method was later used for a practical application by Fuchs et al. [2], where the graph

problem was studied and solved using a divide and conquer algorithm rather than the heuris-
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Figure 1: (a) Two adjacent contours. (b) Graph representing contours.

tics of Keppel. They show that the surface can be represented by paths in the graph, and

that they can be found by successively subdividing the graph in order to minimise the search

space. The measure that they try to minimise is the triangular facet area with additional

measures to prevent the twisting of the surface.

Sloan and Painter [3] review the graph solving problem and compare common techniques.

They also give a detailed description of a new technique in which they select pessimistic

paths in the graph search which they show leads to a quicker solution, as opposed to selecting

paths that minimise the search space. They explain that this is because that subdividing

unequally results in subgraphs that will take approximately the same time to search, since

the larger can take advantage of bottlenecks to remove nodes from the search, leaving less

nodes for the more complex search for the optimal solution in the smaller subgraph.

The method of Fuchs et al. was also used by Cook et al. [4] with application to measuring vol-

umes of surfaces represented by contour data. Speci�cally, they were interested in measuring

the volume of human organs such as the liver.

Ganapathy and Dennehy [5] use heuristics1 to triangulate between contours. They use a

method of normalising the contour perimeter to 1. The next tile is chosen so that the di�erence

in value of the distance traversed along the top contour with that of the lower contour is

minimised. This measure has the advantages that it can be calculated cumulatively using

local information and that previous contour spans contribute to the current calculation. It

also has the advantage of requiring only M +N steps to calculate the tiling. This is a result

of choosing the tiling according to local information, and not minimising some measure of the

complete tiling.

Heuristics are also used by Cook et al. [6]. They map the contours onto star-convex regions

by assuming contours change direction slowly and smoothly, and have no sharp projections.

The centroid of the upper region is determined, and the star-convex region for the lower

contour is de�ned such that every line connecting each point of the lower contour to the

centroid of the upper region passes through the region. A tiling between the two mapped

contours is determined using heuristics which are based on the dot product of the vectors

joining the centroids and the points to be tiled. Once the tiling process is complete, the

mapped contours are returned to their original con�guration retaining the tiling connections.

1Optimal methods solve the problem using graph methods to �nd a near optimal solution with respect to

some measure.

Heuristic methods solve the problem using local information only as a basis for choosing the tiling.



The mesh produced is then used for the display and measurement of the area and volume of

the reconstructed object.

4 Correspondence and Branching Problems

The main problem associated with this basic tiling method is the fact that the algorithm is

restricted to the generation of surfaces from contour data which have just one contour for

each value of z. Any object which is branching or coalescing in nature cannot be tiled. More

speci�cally the problems encountered are referred to as the correspondence and branching

problems, and are stated as:

� Correspondence problem { given two slices with arbitrary numbers of contours within

them, which contours from one slice correspond to which contours on the other slice?

Without establishing the correspondence between the contours, the tiling algorithm

cannot be used.

� Branching problem { given two slices where M contours correspond to N contours

(M;N > 0), how should the tiling process be carried out?

Shantz [7] dealt with the many to many branching problem by connecting contours within

the slice plane using as few as possible minimum distance connections. This has the e�ect

of creating a single contour on each slice, which represents all the contours on that slice.

The tiling then takes place using the method of Fuchs et al. [2] which can handle the case of

mapping just one contour to one. The problem with this method is that it can only handle

contours that are very similar in shape in adjacent slices. It can only handle multiple contours

on a slice if they approach each other at one point rather than having a complex interface

(Figure 2).

Figure 2: Approach at (a) A single point (b) A complex interface.

Another solution to these problems was proposed by Christiansen and Sederberg [8] in which

they determine corresponding contours as those that overlap in any way. Once a correspon-

dence between contours has been determined, contours in successive slices are bounded by

boxes and mapped onto a unit square. The reasoning behind this is that successful contour

triangulation is more likely when successive contours are mutually centred and similar in size

and shape. Triangulation takes place on these contours using the very simple method of

selecting the next triangle with the shortest diagonal, thus removing the need to resort to

costly graph searches for the reasons mentioned above in the method proposed by Ganapathy

and Dennehy. Branching is coped with by introducing a new vertex between the closest point

on the two branches and combining them along with this point to make one contour. Tiling

takes place on these two normalised contours and is then mapped back to the original vertex

positions. This method copes well with simple branching but has diÆculty when branching

contours have a complex interface, which is more often than not the case. In these cases it is

suggested the user should manually triangulate the path between the two branches.



Boissonnat [9] creates a surface from contours by projecting the Voronoi diagram of two

neighbouring contours onto a plane parallel to the planes of the contours. The resulting 2D

graph is used to create the 3D Delaunay triangulation between the two slices. He proves

that this is possible for such a restriction on the points (the points occur in two 2D planes

and are connected in each plane in the form of contours) and that the method for doing so

is optimal. The resulting triangulation is a solid, of which the external faces make up the

surface of reconstruction.

This method is very successful in the diÆcult situations where there are multiple contours

with di�ering numbers upon successive slices. The method fails when adjacent slices di�er

too much, in addition to which the circumstances for failure cannot be identi�ed. In such

cases more slices must be taken through the object. The images presented in the paper show

the method working for lungs and a heart, although they are not of a high �delity.

Ekoule et al. [10] propose an algorithm which handles arbitrarily shaped contours, with

multiple contours on each slice plane allowed. For their contour triangulation method they use

a simple minimum edge length heuristic which is similar to Christiansen and Sederberg's [8]

shortest diagonal heuristic. They divide the contour into convex and concave regions in a

similar way to Keppel [1] and create a representative tree structure. Each contour is mapped

onto its convex hull with vertices in the concavities mapped using Euclidean distance to

retain the relative distances between successive points. The tiling then takes place between

the two convex contours trivially, producing a satisfactory triangulation. This triangulation

is then retained as the vertices are mapped back to their original positions, thus providing a

triangulation of the original complex contours.

The case of multiple branching (one contour to many) is handled by creating a new interme-

diate contour between the two adjacent slices to be tiled. Each slice is then tiled with this

contour to produce the overall tiling. The intermediate contour is produced by creating one

closed polygon which is composed of points of the many contours clipped against a polygon

joining the centroids of the contours. This polygon is tiled with the single contour and vertices

are moved halfway along the spans to create the intermediate contour. The single contour

is trivially tiled to this, while each individual contour on the slice with many contours is

tiled with its corresponding contour part in the intermediate contour. The centre part of

the intermediate contour is then tiled horizontally using existing vertices and the process is

complete.

In order to cope with many to many branching they determine which contours should link with

which using a superposition degree estimate. Those that should link are then tiled together.

This method, whilst dealing with moderately complex cases, will have diÆculty when adjacent

contours do not have similar convex hulls. In addition to this the tiling is not successful in

some cases of many to many branching. The problem occurs when the links do not form

disjoint sets. For example (Figure 3(a)) some of the links are a ! c + d; b ! d + e and

d ! a + b. In this case the available contours are insuÆcient for their tiling method, they

require the contours of Figure 3(b), which have links c! a+ b and c! d+ e+ f .

Giersten et al. [11] use user interaction to determine the connectivity between contours of

adjacent slices. During the contouring process the previous slice is overlaid on the current

slice in semi-transparent form and the user speci�es successive contours. The contour slices are

automatically aligned by using the centroid information provided by specifying corresponding

contours. The slices are rotated and translated to achieve the correct alignment and overlap,

and scaled to compensate for objects which may have been compressed as the result of the

slicing process. They then proceed to reconstruct the data on an object by object basis. For
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Figure 3: (a) InsuÆcient data (b) SuÆcient data.

each object they have a subgraph which indicates the corresponding contours on each slice,

and their connectivity. Where a contour branches, or contours coalesce, they use a simple

contour branching scheme based on that of Christiansen and Sederberg [8], and as such can

only handle simple one to many cases. In addition to reconstruction they also apply 3D

�ltering techniques in order to produce smooth object surfaces.

5 Cones

Soroka [12] investigates the use of Generalised Cones (GCs) when applied to the reconstruction

of objects from contour data. The three components of the GC are the spine, cross section

and a sweeping rule. Soroka uses elliptical cones (ECs) which are described using elliptical

cross sections, and by allowing the minor and major axis of the ellipse to vary linearly and

independently over time. Each contour is determined to be either elliptical or complex.

Complex contours are discarded and play no other part in surface reconstruction. On �nding

an elliptical contour the algorithm tries three rules in order, �ring the �rst rule that applies.

First it tries to extend an existing EC by adding the elliptical region to the end. Secondly

it tries to create a new cone from the newly found single elliptical region. Thirdly it splits

o� a subregion of the cone in order to grow the cone into a complex region. Essentially this

process attempts to model the general topological and geometrical information provided in

the data, but su�ers from a few problems.

The method can only model simple convex objects. Any contours or parts of the object

regarded as complex are omitted from the �nal reconstruction. The practical application

that Soroka presents is that of the reconstruction of a canine heart. The resulting model has

the right ventricle missing because the contours comprising that object are classed as complex

in that region. Another problem is that fact that the ECs cover the object, and not partition

it. This is due to the fact that regions may be shared by several cones, and the result is that

it would be impossible to use this geometric description to perform any quantitative analysis

about the volume of the reconstructed object.

Myers et al. [13] present progress on the correspondence and branching problems. They use

a descriptive language to indicate the contours present on each slice and the connection to

contours on adjacent slices. This connectivity information is the result of an analysis of con-

tour correspondence which is performed either manually or automatically. Two methods are

suggested for automatically determining correspondence, namely the minimum cost spanning

tree (MST) method and an algorithm using elliptical cylinders (ECs).

The method they use for ECs di�ers from that of Soroka [12] in that complex contours are

not ignored. Rather they are approximated by a subcontour that is elliptical, and which is

then treated in the same way as the other ellipses, either to extend a cylinder, or to create



a new singleton cylinder. The goal of this process is to produce a small number of cylinders

containing as many ECs as possible.

The next stage is to link cylinders together to create objects. They establish that cylinders

can be linked in three ways. The cylinders A and B could link if one end of cylinder A joins

to one end of cylinder B. The cylinder A could link to B and C if one end of cylinder A joins

to the ends of cylinders B and C. Lastly the cylinder A could link to B if the end of cylinder

A joins to an interior contour of cylinder B. In all cases the cylinder can be added to an

existing object. If a cylinder does not connect with any existing object it is used to create a

new object.

Their method also di�ers from Soroka's in that they use each contour only once when creating

a cylinder. This results in the cylinders being a disjoint representation of the surface rather

than a cover of the surface as was the case with Soroka's method. This restriction, while

avoiding the problems of Soroka's method, creates problems of its own, in that the result is

order dependent. The order in which the ellipses are considered has a great bearing on the

cylinders produced since a valid cylinder can be created by an ellipse being added to any

singleton cylinder, when perhaps it would be better used elsewhere. They suggest examining

all cylinders that could be created from three sections and keeping only those that extend to

a length of three.

They also suggest a method using an MST. Firstly an ellipse is �tted to every contour. A

graph is created using the contours as nodes, and a four dimensional value (x, y, A, B) is

associated with each node, where (x, y) is the position of the contour, and A and B are

the major and minor axes. All edges (i, j) are added where contours i and j lie on adjacent

sections, and as such could possibly correspond. The cost for each edge (i, j) is calculated

as the Euclidean distance between the nodes. The result is that the more similar contours

are in position and orientation, the closer to zero the cost is. A MST is then computed, and

if edge (i, j) exists in the spanning tree, contours c(i) and c(j) are expected to correspond.

This tree contains interobject connections which are removed by traversing paths through the

tree from unvisited nodes. After this stage the contour connectivity and object information

is available in the form of that produced by the EC growing method. The problem with the

MST method is that it does not �nd all the connectivity information because a tree rather

than a graph is used. Also because connections are rejected on some criterion, rather than

created, the tree may be left with edges that result in incorrect joins of disjoint objects.

Figure 4: Branching { (a) One to one (b) Two to one (c) Internal.

From this model the branching structure of the object can be classi�ed. In their method they



only allow bifurcations. The three types of branching are { two cylinders are connected (Fig-

ure 4(a)), one cylinder branches (Figure 4(b)) and one cylinder interconnects (Figure 4(c)).

Where branching is involved they divide the possible cases into two { those that involve

contours which have a simple interface (Figure 2(a)), and those that have a complex interface

(canyon) (Figure 2(b)). The simple case can be tiled using the method of Christiansen and

Sederberg [8]. The more complex case is solved by triangulating the polygon representing the

canyon. The two contours are then connected and tiled using the one to one method. The

canyon is found by �nding the convex hull of the combined contours. This results in a list of

points where the two edges from a point on one contour to a point on the second contour are

the edges that close the canyon polygon.

The techniques they describe are quite elegant (MST) and seem to work very well for many

cases that other methods fail on. The main problem with this method is that although they

indicate it can handle cases where many contours correspond to and branch into many, they

give no examples. The canyon tiling for such arbitrary cases would become complex, assuming

the correct connectivity could be found. Their method also su�ers from the problem that it

cannot handle major shape changes between slices, which is usual for these methods. Finally

it cannot handle cases where one contour is entirely contained in another contour de�ning

some hole within the object.

6 Reconstruction from Unorganised Points

Surface reconstruction from contour slices can be regarded as a particular case of the more

general problem of reconstruction from disparate points. The general problem can be consid-

ered to be the reconstruction of the surface from a �nite set of points in space. The restricted

problem of surface reconstruction from contour slices is the reconstruction of a surface from

a �nite set of points where the points occur in a �nite number of planes and are connected in

some way.

The restricted problem arises when the data has been collected in a slice-by-slice manner,

either automatically or manually. The general problem occurs when the data is collected

by some object scanner or sensors (eg. cyberware scanners). This problem occurs during

applications of reverse engineering { the automatic generation of CAD models from laser

range data.

The problem has been approached by Boissonnat [14], using Delaunay triangulation. His �rst

method works well for smooth objects with only minor variations in curvature. A point and

its k-closest neighbours are projected onto a plane and the 2D Delaunay triangulation of the

points is constructed. The triangulation is retained when the points are mapped back to their

original con�guration in order to give the surface triangulation. The second method, which

works for a wider class of objects, creates the 3D Delaunay triangulation for the points. This

triangulation consists of a tetrahedral description of the convex hull of the object. If the object

is not equivalent to the convex hull, tetrahedra must be eliminated from the polyhedron until

all the original sampled points are on the boundary. At this point the external faces of the

tetrahedra is the triangular mesh description of the object.

Edelsbrunner and M�ucke [15] also use 3D Delaunay triangulation to create the mesh, but

have an additional control, �, which controls the level of detail. With � = 1 the mesh

produced is identical to the convex hull of the original set of points. As � is decreased, the

mesh decreases, until � = 0 at which stage only the original points are present. A piece of the



mesh disappears when � becomes small enough so that a sphere with radius � can occupy

the space without enclosing any of the original points.

Turk and Levoy [16] produce meshes from m � n range images by considering each sample

in the image to be a candidate vertex in the mesh. Four points in neighbouring rows and

columns are selected and checked to see if they create triangles. If the distance between three

points is greater than some threshold no triangle is created since the surface may involve an

unseen crevice in that area. The meshes from several scans from di�erent angles are joined

together in a process they call zippering. The �nal stage to the process is to optimise the

mesh (see Section ?? of Chapter ??).

Most of these methods are computationally expensive { Turk and Levoy [16] state that the

process of digitising an object and producing a mesh requires "�ve minutes of user interaction

and a few hours of compute time". Boissonnat [9] applied the Delaunay triangulation method

to the restricted problem, and took advantage of the restriction to reduce the computational

expense. A future project could be to try to apply these methods to the restricted problem

in an attempt to both accelerate these methods, and solve the restricted problem.

7 Remarks

From the above review of the various approaches it should be apparent that most strive to

solve speci�c problems. The problem of tiling between two well behaved contours seems to

be successfully managed, but by simply increasing the shape complexity of the contours,

erroneous tilings start to occur. This problem can be overcome by mapping the contours

to shapes that can be well tiled, for example Ganapathy and Dennehy's normalised length,

Christiansen and Sederberg's mapping to unit square, and Ekoule et al.'s mapping to convex

hull. The mapping of contours to some other shape is carried out so as to preserve the order

and relative distances of vertices. The tiling process is carried out on the mapped contours,

and the tiling is retained once the contours are returned to their original con�gurations. This

allows a new class of contours to be handled, but the tiling process still requires contours to

be similar in shape, and so if their mapped shapes are not similar, the method still does not

produce a satisfactory tiling. A good test of any tiling technique is that of a spiral contour

in one slice, and a convex contour in the next slice. This is regarded as being such a diÆcult

case that J. Rossignac2 of IBM research set a competition to produce a surface from such

contours. None of the methods mentioned thus far can create a satisfactory surface from such

contours, solely because they di�er too greatly. Attempts have been made but as Boissonnat

reports [9] the usual surfaces produced, intersect themselves.

In addition to the fundamental problem of tiling between two contours most methods have

trouble tiling branching contours. The approaches can be divided into those that do not

cope with branching, Sloan and Painter's, Fuch et al.'s, Ganapathy and Dennehy's, and

Soroka's, those that cope with simple branching (one to many, only when contours approach

at a point), Shantz's, Christiansen and Sedeberg's, and Geirsten's, and those that cope with

more complex branching (some many to many cases and contours that approach at complex

interfaces) Boissonnat's, Ekoule's, and Myers et al.'s. Even the advanced methods do not

cope well with moderately complex branching cases, and often require many slices in areas

of mild complexity. The problem is compounded if contours have complex shape or branch

arbitrarily many to many, and it seems that the more complex the case to be handled is, the

more complex the solution is. Boissonnat [9] points out that mostly the inadequate solutions

2Personal communication



are a result of the methods not being able to tile horizontally under the contours in order to

form bridges.

All the methods reduce the problem to that of determining the surface between two adjacent

contours and carry out the tiling using heuristic or optimal methods and in the case of

Boissonnat [9] Delaunay triangulation.

In addition to all of these problems, contour methods also usually lack ability to create

surfaces with a de�nite thickness, for example a hollow cylinder as would be produced from

the contours of Figure 5.

Figure 5: Contours with internal structure.

MacLeod et al. [17] were faced with the task of reconstructing the human thorax from over

a hundred MRI slices. They describe the process as time consuming, since after digitisation

of the contours, and alignment of the points, the resulting triangulated mesh must be edited

by hand. User intervention is required in order to correct any inconsistencies of the mesh,

involving a slice by slice check by hand of the whole surface that has been generated by the

tiling process. To produce a surface from such data is tedious and can take of the order of

one man day to do so.

The fact that so many problems exist for such a tiling method would suggest that an altogether

new approach to the problem is required. The new approach should be able to cope with

arbitrarily shaped contours with ease and produce good surfaces from the contour data quickly

and with a minimum of user interaction. It should also be able to derive surfaces from many

to many branching contours that is a smooth representation, and gives a good idea of what

the original object was. Operation with a minimum of preprocessing to orientate the contours

would also be a good requirement.

8 A New Approach to the Construction of Surfaces from Con-

tour Data

In this section a new approach to the construction of surfaces from contour data is introduced.

The process neither establishes a correspondence between vertices on one slice with those of

the next as all other methods do, nor does it require preprocessing of the contours, or the

contours to be similar in shape. The method is shown to be accurate, in that the surface

produced, when intersected by planes corresponding to the original contour slices, produces

the original contours. It is consistent in that the surface is not dependent upon the order

in which the slices are processed, or the ordering of the segments of any of the contours.



It is eÆcient with regard to computation and ease of implementation. It is also 
exible in

that it handles arbitrary shaped contours that do not need to be convex, does not require

the segments to be organised in such a way that they are placed end to end, joining the last

vertex of the last segment to the �rst vertex of the �rst segment, and it does not require the

segments to be organised such that a point is inside the contour if it is to the right, or outside

otherwise. In fact it only requires that the contours be non-self-intersecting and closed, which

is far less restrictive than the other methods.

Volume Construction

Surface Construction

function
a field

a surface

a volume

slices
contour

Figure 6: Two phases of the algorithm.

This new algorithm is organised as in Figure 6, which shows the input to the volume construc-

tion phase as a stack of contour slices and a �eld function. The result of this stage is a volume

which is then used to create the surface in the surface construction phase. The background

which lead to the development of this method is given in Section 9. Details about the input

requirements are given in Section 10. EÆcient calculation of the �eld function is the topic

of Section 11 and results for some classical and practical problems are given in Section 12.

Finally the approach is compared and summarised in the conclusions, Section 13.

9 Background

The impetus behind this research is the requirement for a good, robust method for producing

surfaces from contour data. The data involved is that of a set of just 18 MRI slices through

a human torso, from which models of the thorax, liver and lungs were required. It was also

a requirement that the surface be as accurate and smooth a representation as possible. The

MRI data did not contain any sharp delineation of objects, and as such was not suited to

other methods of visualisation (Chapters 2 and 3). This fuzziness was due to the thickness

of the slices. In addition the contours varied greatly between slices due to the fact that there

was such a large interval between scans (3cm). As a result of the fuzziness problem, it was

best to identify the organs by eye, and outline them using digitised contours. Each slice was

displayed in turn, and the contours of interest were outlined using mouse presses to indicate

the positions of vertices on the boundary. The fact that the contours varied greatly between

slices suggested that standard methods would not work well since this is the case they have



most diÆculty with. The need to visualise and perform mensuration upon surfaces from such

contours led to the development of a new approach to construct surfaces from contour data.

10 Input Requirements

The input to the volume construction phase is a stack of contour slices S1, S2, : : :, SNz
and

a �eld function f(x; y). The function f(x; y) is de�ned over all points of a plane in which

contours of a slice reside such that

f(x; y)

8><
>:

< 0 if (x; y) is outside all contours

= 0 if (x; y) is on a contour

> 0 if (x; y) is inside a contour

(1)

In this phase, a two dimensional grid of size NX � NY is uniformly mapped onto every

contour slice. By de�ning a z-axis in the direction of the contour stack, each grid point can

be considered as a voxel in an NX�NY �NZ volume. The value associated with each voxel at

location (x; y; z) is de�ned as f(x; y) computed against all contours residing in plane z. The

grid size determines the resolution of the surface to be constructed. The optimal accuracy can

be obtained by choosing a �ne grid or a grid with unequal intervals such that every contour

vertex is located at a grid point. The original contours in each slice can easily be extracted

from such a grid by taking all grid points where f(x; y) = 0, and linearly interpolating points

that are not located at any grid point. This is valid since a contour is composed of a set

of line segments, each of which is a linear interpolation between successive vertices of the

contour. However, in practice, eÆciency in computation and implementation can be achieved

without sacri�cing much accuracy by using a relatively coarse grid with equal intervals and an

appropriate �eld function. The consideration of choosing a �eld function is to be investigated

in the next section.

In the surface construction phase, the volume representation constructed from the contour

slices is regarded as a continuous volume space, where the value of a non-voxel point is a

trilinear interpolation of values of its eight neighbouring voxels that make up a cube containing

the point. In comparison with the contour-based representation, this allows more general and

consistent operations to be carried out. The process of extracting a surface from the volume

is simply to identify all the points at which the trivariate function has a value of zero. The

surface tiling algorithms of Chapter 2 may be used to construct such a surface in the form of

a mesh of triangular facets which can then be rendered. The inbetweening of two successive

contour slices becomes a trivial task of interpolating between two successive images in the

volume.

11 EÆcient Calculation of the Field Function

In the volume construction phase, a �eld function is computed with each voxel (i.e. grid

point) in an NX � NY � NZ volume. One simple �eld function is a decision function that

determines if a point is interior, exterior to or on the contour boundary:

f(x; y) =

8><
>:

�1 if (x; y; z) is outside all contours

0 if (x; y; z) is on a contour

1 if (x; y; z) is inside a contour

(2)



The advantage of this function is that a polygon �ll algorithm can be employed to scan

grid points in each of the contour slices and determine their topological states in relation to

contours. However, the surface produced is highly dependent upon the density of the chosen

grid, and moreover, the �ner the grid, the more discontinuous the surface in the z direction.

This problem is illustrated in Figure 7, which shows two adjacent contour slices (Figure 7(a))

and the cross section of a surface constructed with each of three di�erent grids (Figure 7(b)).

Figure 8(a) shows a blocky surface resulting from the use of the function. The blockiness

exhibited by the surface in Figure 8(a) is a result of the fact that essentially a binary decision

has been made at each voxel { either it is inside the surface or not. This leads to a restricted

number of possible surface con�gurations and as such surface normals, leaving the surface

with large areas of 
atness and sharp edges instead of a smoother continuous surface.

A far better �eld function is a distance function de�ned as

f(x; y) =

8><
>:

�dist(x; y) if (x; y) is outside all contours

0 if (x; y) is on a contour

dist(x; y) if (x; y) is inside a contour

(3)

where dist(x; y) is the distance from (x; y) to the closest point on the contour, or contours if

there are more than one on the slice. This results in a volume that represents a continuous

function sampled at discrete grid points and allows a surface to be constructed based on linear

interpolation. As shown in Figure 7(c), the shape of the surface is not a�ected by the �neness

of the grid in the same way as the simple �eld function. In contrast to Figure 8(a), Figure 8(b)

shows a much more satisfactory surface produced using the distance �eld function. It is a

much more natural surface than that of the one in Figure 8(a), and more like the surface one

would have expected to have produced the contours.
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Figure 7: (a) Two adjacent contour slices. (b) Results of the simple �eld function with three

di�erent grids. (c) Result of the distance �eld function.

The method described above is simple to implement, but implemented naively would result

in an algorithm of O(
PNZ

i=1NX �NY �NCi
), where NZ is the number of slices, NX and NY are

the dimensions of the grid and NCi
is the number contour segments in each slice Si.

The calculation of the distance �eld would be computationally expensive, as for every grid-

point, the distances to every contour segment in the same slice have to be calculated in order



Figure 8: (a) Result of using simple �eld function. (b) Result of using the distance �eld

function.

to �nd the minimum. Typically, for a volume data set with 200 � 200 � 25 grid points and

an average of 100 contour segments in each slice, 100 million distance calculations need to be

performed. Since each distance calculation involves a computationally expensive square root

this is obviously prohibitive and the prerequisite that the method should be quick to compute

is not ful�lled.

The complexity of the algorithm can be reduced by partitioning each slice Si into NCi
sectors,

each of which contains a contour segment Ci and those grid points closer to Ci than any other

segments. The distance �eld value of each grid point can then be calculated using the �eld

function against only one contour segment. Figure 9 shows an example of partitioning a

plane consisting of two simple contours. The partitioning process is almost identical to that

for constructing a Voronoi diagram except that bisectors between pairs of contour segments

as well as vertices are calculated. The optimal solution to the Voronoi diagram is known as

O(N � logN) [18]. Therefore the complexity of the partitioning stage is O(
PNZ

i=1NCi
� logNCi

)

and the volume construction phase has a complexity of O(NX �NY �NZ).

dist

Figure 9: Partitioning a contour slice.

Although the number of segments to be considered for each grid point is reduced to one,

the distance function still has to be computed for every grid point in each slice. As the

implementation of a partitioning algorithm is far from being trivial, in most applications the

actual saving on the cost of implementation and computation is usually very little if there is

any.

By simple observation it can be seen that it is not necessary for the value of every grid point

to be accurately computed. In the surface construction phase, the algorithm examines each

cube, bounded by eight grid points. When it encounters a cube which contains the object

interface it performs surface construction by linearly interpolating these grid points to �nd

the polygon vertices of the surface, and also the surface normal at these vertices is calculated.

Voxel values at the eight vertices of the cube need to be known in order to determine the



surface. The 6-neighbours3 (two in each of the x, y and z directions) of each voxel also need

to be known in order to calculate the surface normal. In other words, only the values of voxels

near the actual surface are required in order to display the surface. At all other voxels an

indication of whether the point is inside or outside the surface is suÆcient. This leads to a

practical method for reducing the computational cost by restricting the distance computation

to those voxels near the surface interface.

Each voxel is associated with two �elds, namely state and distance. The state �eld indicates

whether a voxel is interior (1), exterior (�1) or on the surface mesh (0), and is �rst computed

by scan-converting the object. The state function (Equation 4) can be calculated for each

voxel (x; y; z).

f(x; y; z) =
z+1X

k=z�1

y+1X
j=y�1

x+1X
i=x�1

state �eld of voxel (i; j; k) (4)

For a voxel (x; y; z) there is no need to apply the distance function (Equation 3), if:

� its state �eld is zero, or

� f(x; y; z) = 27 or �27 and f(x0; y0; z0) = 27 or �27 for each 6-neighbour (x0; y0; z0).

It is obvious that there is no need to apply the distance function when the state �eld is zero

which indicates the voxel is on the surface. The second condition shows that if a voxel and all

its 26-neighbours4 are all interior (or all exterior) to the surface and all the 26-neighbours of

its 6-neighbours have the same state, its distance value will not in
uence the surface display

in any way. The �rst part states that a voxel need not be known if it is not used during linear

interpolation of position, and the second part states that a voxel need not be known if it is

not used during determination of the surface normal. This process eliminates many voxels

from the expensive distance computation and identi�es those voxels, and only those voxels,

for which the distance function must be calculated.

Although the pre-processing stage (i.e. scan conversion) still has a worst case complexity of

O(
PNZ

i=1NX �NY �NCi
), if the number of voxels on each slice Si for which the distance must be

calculated is Ri, the number of distance calculations is now
PNZ

i=1Ri �NCi
. Usually Ri is less

than both X and Y , and is much less if a �ne grid is used, therefore this method results in a

reduction of an order of magnitude of the number of distance calculations. Furthermore, the

complexity of the distance calculation can be reduced to O(
PNZ

i=1Ri), if combined with the

partitioning method. In practise this partitioning stage is diÆcult to implement and compute.

A far easier method is to divide the grid up into sectors, and distribute each contour segment

into its appropriate sector. Measuring the distance to a contour then becomes the simple task

of �nding the distance to the closest contour segment within the sector. Any sectors outside

of this distance can be trivially removed from a list of candidate sectors, thus greatly reducing

the number of contour segments to compute the distance against, and hence speeding up the

process.

3The 6 neighbours of a voxel comprise just its face neighbours, when considered as a cube.
4The 26-neighbours of a voxel comprise its 6 face neighbours, 12 edge neighbours and 8 vertex neighbours.



12 Results for Classical and Practical Problems

In this section the surfaces constructed for various contour data sets are examined and

discussed. The contours have been deliberately chosen such that they show how this approach

can cope with contours that other methods cannot. They have also been chosen to show how

good the surfaces are, that are produced by this approach.

The branching problem has already been shown to be a complex problem, particularly

when many contours branch into many. To demonstrate how well this method copes with

branching, �ve cases are presented. Firstly the simple case of one contour branching into

two (Figure 10(a)). Secondly, one contour branching into two, and approaching at a complex

interface (Figure 10(b)). Thirdly, one contour branching into four (Figure 11(a)). Fourthly,

a particularly diÆcult case of three contours branching into �ve (Figure 11(b)), and �nally

one contour branching into two contours and then into three (Figure 12(a)).

Figure 10: One contour branches into two at a (a) Simple interface. (b) Complex interface.

Figure 11: (a) One contour branches into four. (b) Three contours branch into �ve.

One contour branching into two can be e�ectively coped with by most tiling algorithms

and the example is given to show that the surface is reconstructed just as e�ectively by

this method. A far more diÆcult problem is that of branching into two contours where the

contours approach at a complex interface. Previously user intervention or a complex tiling

algorithm [19] would be required, but this method creates a surface without resorting to such

techniques. To demonstrate one to many branching, one contour branching into four has

been chosen. The resulting surface is a smooth representation of what one would expect the

surface to look like. The diÆcult case of three contours branching into �ve also results in



a natural looking surface and suggests that this method truly handles arbitrarily many to

many branching without the complexity or failings of other methods. The �nal branching of

one contour to two and then three contours has been highlighted to show that a case Ekoule

et al.'s method cannot cope with (Section 4), can be solved using this approach. He stated

there was insuÆcient information available to tile the case of two contour branching into

three, and that more slices would be needed in the vicinity in order to determine the surface

representation. As can be seen, this method requires no such information and produces a

very natural looking surface. In fact, by adding the additional contour on top of the other

two slices, it is shown that the method correctly tiles around the hole that is present in the

surface. The tiling is also very smooth and natural looking, which is a result of the distance

function. By observation, this method robustly handles diÆcult many to many contour tiling

cases with ease. It requires no extra information to be present with the contours, no user

interaction and no tricky special procedures to create the tiling. The data is treated uniformly

and consistently in every case in order to produce the surfaces.

Figure 12: (a) One contour branches into two and then into three. (b) S to a circle.

The problem of greatly di�ering contours is also a major stumbling block for the tiling

methods. To show that this method creates satisfactory surfaces for such situations, a number

of cases have been chosen that involve quite complex contours in successive slices. The �rst

is an S-shape corresponding to a circle (Figure 12(b)). Secondly, a thin slice successively

becoming a square, a triangle and a circle (Figure 13(a)). Thirdly, a spiral becomes a circle

(Figure 13(b)).

Figure 13: (a) Tube to square to triangle to circle. (b) Spiral becomes a circle.

The �rst example of an S-shape corresponding to a circle demonstrates that a mildly complex

case produces a very reasonable, smooth surface. Such a contour pair would result in



undesirable tilings using most methods. The method of Ekoule et al. [10] would produce

the correct surface since both contours would be mapped to their convex hulls, and the tiling

would take place between these contours. Problems would arise if the convex hulls of the

contours di�ered greatly, and such a situation is given in the second case. Again the surface

produced is convincing as a candidate surface. Finally as stated in Section 4 the mapping

of a spiral to a convex contour is an extremely diÆcult situation, but as can be seen by this

particular surface, one that can be handled very well by this method.

The next example seeks to demonstrate how contour correspondence is determined. In the

�rst example two similar contours do not overlap when viewed perpendicular to the plane,

and result in two separate objects (Figure 14(a)). In the second case they do overlap very

slightly and are treated as one object, namely as a tube (Figure 14(b)). The results may or

may not match with a desired shape, but since both surfaces could be valid, it is diÆcult to

say which is correct or not. However, it is commonplace to treat contours that do not overlap

as separate objects and those that do as joined objects. This method certainly handles such

cases consistently.

Figure 14: (a) Contours do not overlap. (b) Contours do overlap.

Figure 15: Internal object structure.

The �nal arti�cial problem shows a contour that has been constructed interior to another

(Figure 15). This contour is present on the two middle slices, but not on the two outer ones.

The reconstructed object has an exterior surface made from the joining of the four external

contours, and an interior closed object made from the two internal contours. This method

di�ers from the majority of other methods in that it handles such contour situations as

contours that are describing the internal construction of an object. E�ectively, this method

can produce objects that have a determinable thickness. The two surfaces represent the



boundary of the object, and are produced from the volume data, having their surface normals

calculated from the data. The surface normals do indeed point outwards from the surface,

and so for the internal surface correctly point inward towards the empty centre of the object.

The practical application chosen is that of reconstructing the torso (Figure 16) and lungs

(Figure 17) of a human male from just 17 and 12 contour slices respectively. The slices

were obtained using a MRI scanner, and were �rst described in Section 9. Each contour

was obtained by outlining the object within the slice using a mouse. The stack of slices were

converted into a volume, and then a surface was reconstructed from them. Considering so few

slices were used for the reconstruction the resulting surfaces are fairly detailed and smooth,

with notable pectoral muscles, shoulder blades and abdomen on the torso.

Figure 16: Torso reconstruction from 17 MRI slices.

Figure 17: Lung reconstruction from 12 MRI slices.

The results of all this testing on a Dec Alpha model 3000/400 using C are recorded in Table 1,

with timings given in seconds.



Fig. Case Contour No. of Grid Size No. of Volume Surface

Resolution Slices NZ NX �NY Triangles Construction Construction

10(a) 1 to 2 200� 200 2 50� 50 531 0.133 0.02

10(b) 1 to 2 200� 200 2 50� 50 694 0.183 0.03

11(a) 1 to 4 200� 200 2 50� 50 630 0.133 0.02

11(b) 3 to 5 240� 240 2 60� 60 2892 1.000 0.07

12(a) 1-2-3 200� 200 3 50� 50 889 0.150 0.02

12(b) S to O 200� 200 2 50� 50 770 0.200 0.02

13(a) C-hulls 200� 200 4 50� 50 2332 0.300 0.05

13(b) Spiral 240� 240 2 60� 60 2188 1.050 0.05

14(a) O�set 200� 200 2 50� 50 1312 0.217 0.03

14(b) Overlap 200� 200 2 50� 50 774 0.133 0.02

15 Interior 260� 260 4 65� 65 3768 1.083 0.10

16 Torso 512� 512 17 64� 64 8682 4.017 0.32

17 Lungs 420� 420 12 84� 84 10413 5.050 0.38

Table 1: Table showing testing results

13 Discussion

This method treats contour data in an altogether more consistent way than the previous

method. The use of the �eld function converts the data into a volume of numerical data,

from which the surface is derived. Since the surface is determined locally on a cube by cube

basis, decisions about how good the tiling is, are redundant. Since the tiling can follow the

surface arbitrarily through the volume, horizontal tilings are created automatically, without

the need for user interaction or special tiling algorithms. The previous methods generated the

surface by considering the contours of two slice planes at a time, whereas this method could

be regarded as ignoring such structures and producing the surface globally from the volume

as a whole by using local surfacing operations on cubes.

The result of using this new approach is that the data is treated consistently with no need

for preprocessing. As an example it is often required that the contour segments are listed in

an anti-clockwise manner, with the start vertices in close proximity. Such preprocessing is

removed, and the contour segments and contour slices can be processed in arbitrary order.

The branching problem is handled quite well with all of the problematical cases being tiled ef-

�ciently. Satisfactory surfaces are created for complex branching situations involving complex

contour to contour interfaces. The problem of tiling massively varying contours between slices

is essentially solved. The method even produces a satisfactory surface for the highly complex

spiral problem. The example tilings have also shown that objects with interior structures can

be reconstructed from contour slices that have contours interior to other contours, and that

the surface created encloses the solid object, and has the correct surface normals.

Finally, from Table 1 it can be seen that the time to create such surfaces is quite acceptable,

even for the large problems of the lungs and torso. Taking as example the problem of

reconstructing the torso from MRI slices (�rst mentioned in Section 7). Using this method,

one can rely on the surface produced from the contour data, and therefore there is no need to

manually adjust badly placed tiles. A smooth surface can be produced from very few contour

slices, and therefore the time required to isolate the object in the MRI scans is reduced. In

the particular case of the torso reconstructed from 17 MRI slices, it took about 5 minutes



to outline the object in all of the slices, create the volume data, and reconstruct and display

the surface. The 5 minutes compares quite favourably with the day taken by MacLeod et al.

mentioned in Section 7. The resulting surface is smooth, and compares very well with the

surface they produce.

The advantages of this method enable it to be useful for the rapid visualisation of contour

data. It is particularly suited to applications where few contour slices are available, and a

good, smooth surface is required quickly. The user can select a few slices from the data,

create the contour outlines and produce the surface automatically. Using other methods this

would not be possible because contours would di�er too greatly between slices, but using this

method such a factor is not so important.

14 Conclusion

This chapter has reviewed the techniques that exist for the reconstruction of objects from

contour data (Sections 3{7). It has shown that the failings of such methods are their inability

to handle complex branching and di�ering contour shapes on successive slices. In addition to

these main problems, these methods fail to reconstruct solid objects with holes, and require

many restrictions on the contour data to be adhered to. In contrast a new method for the

reconstruction of surfaces from contour data has been presented (Sections 8{13). This method

correctly tiles complex cases, and is able to reconstruct objects with interior structures. It

requires only two restrictions to be present with the data, namely that the contours are

closed and non-self-intersecting, which is far less restrictive than other methods. The surfaces

produced are smooth, and natural looking, and the method produces them by treating the

data in a consistent and appealing manner. The many test cases demonstrate that this

method is reliable, automatic, e�ective and computationally inexpensive when producing

surfaces from contour data.

This work [20] was presented at Eurographics 1994 (Oslo, Norway), and appeared in Computer

Graphics Forum 13:3, pp C-75{C-84, under the title "A New Approach to the Construction

of Surfaces from Contour Data".
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