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Abstract. This paper is concerned with high quality volume visualisation 
with additional emphasis on real time cutting operations for displaying 
surface interiors. In many applications , it is necessary for a user to 
interac tively perform cutting operations on a volume dataset in order to see 
different parts of the data. A method for implementing such operations, 
together with a direct surface rendering algorithm, has heen developed and 
results have demonstrated its efficiency in comparison with existing 
methods. 

1 Introduction 
Volume visualisation has a variety of applications in the fields of medical imaging, 
flow visualisation, seismic studies, and microscopy amongst others. Several methods, 
including surface reconstruction (Lorensen and Cline, 1987) and direct volume 
rendering (Levoy, 1988), have been developed for presenting a three dimensional 
volume dataset in a way that is easily understandable by a user. In many applications, 
a user often wishes to see different parts of the data, such as the interior of a surface, a 
cross section or a nested object. Therefore it is necessary to provide the user with 
interactive cutting operations for removing obstructing parts of the volume. Although 
basic techniques for volume visualisation have been well studied during the past few 
years, no method has yet been found in the literature for allowing real time cutting 
operations on large volume datasets. 

This paper presents a direct surface rendering algorithm with emphasis on real time 
cutting operations for displaying surface interiors. The background for existing 
volume visualisation methods is given in Section 2. In Section 3 an efficient 
algorithm for rendering a surface without a construction process is presented, and in 
Section 4 the extension of the method to allow real time cutting operations is 
described, followed by the testing results in Section 5 and conclusions in Section 6. 

2 Background 

Existing volume visualisation methods include surface reconstruction, direct volume 
rendering, and forward projection. The surface reconstruction method (Lorensen and 
Cline, 1987; Wilhelms and Van Gelder, 1992) operates on cubes, each composed of 
eight voxels, where each voxel represents a value in the 3D dataset. By traversing 
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cubes in the volume, it reconstructs a surface composed of all points of some 
predefined threshold value. Such a basis was used by Lorensen and Cline for their 
marching cubes algorithm, and Wilhelms and Van Gelder for their octree-based 
algorithm. The disadvantage of this method is that a triangular mesh is created which 
must be stored and then displayed. For some large datasets, such a mesh can have in 
excess of a million triangular facets. In addition to the overhead of storing such a 
mesh, it can take some time to display the mesh without the aid of a highly 
sophisticated hardware renderer. 

The direct volume rendering method (Levoy, 1988; Sabella, 1988; Drebin, et al, 
1988) treats a volume as a cloud of densities and produces a display image by casting 
rays into the volume. Each pixel in the image plane represents the accumulated 
intensity of light and colour reaching the eye after passing through the volume. A ray 
is traced through the volume for every pixel in the image plane, sampling the volume 
at regular points where values such as colour and opacity are linearly interpolated. The 
colour and intensity of each pixel is obtained by compositing the sampled values 
along the corresponding ray. The method suffers from the drawback that extensive 
calculation is required to interpolate values at every sampling point, and thus is not 
suitable for real-time operations. 

The forward projection method (Westover, 1990; Laur and Hamahan, 1991) projects 
voxels in the volume directly onto an image plane where each voxel is drawn a<; a 
footprint. A footprint may represent the energy density (Westover, 1990) or the 
projected shape (Laur and Hanrahan, 1991) of a voxel, and is composited with all 
other footprints on the image plane with an intensity determined by the voxel 
location. Though the method is considered to be faster than the surface reconstruction 
and the direct volwne rendering method, the resulting images generally lack accuracy 
and quality. 

With almost all existing methods, cutting operations have to be implemented in the 
object space. This leads to re-rendering a volume or surface whenever a change is 
made to the cutting planes. For example, with the surface reconstruction method, 
cutting operations consist of intersecting the cutting planes with a triangular mesh 
representing the surface. For a large triangular mesh, a hardware renderer is essential 
to achieve real time cutting operations. Direct volume rendering does allow surface 
interiors to be visualised using an opacity map that defines wholly or partially opaque 
voxels. As the opacity map is usually defined as a function of voxel values, the 
method cannot deal with the situation where an object of interest is of the same value 
as an obstructing object. An alternative way of defining an opacity map was proposed 
by (Ma, et al, 1991 ), with which nested objects can be displayed by increasing 
opacity around the object of interest and decreasing it away from it. However, in 
many applications, the shape of an interesting object is often arbitrary and its 
position is usually unknown, moreover, with any algorithm ba<;ed on direct volume 
rendering, the whole volume has to be retraced when the opacity map changes. 

3 Direct surf ace rendering algorithm 

In order for a user to interactively perform cutting operations on a volume, it is 
desirable for these operations to be carried out on an image space representation of the 
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rendered volume or surface. The direct surface rendering algorithm is intended for 
generating such an image space of a reasonable size. 

The algorithm bears a resemblance to the direct volume rendering method in principle, 
but it is interested in the surface contained in a volume rather than the intensity and 
colour of every voxel. The surface is defined as a set consisting of all points in the 
volume space whose values are equal to a predefined threshold value 't, and it may be 
composed of disconnected pieces. For each pixel in the image plane, a ray is cast into 
the volume and is traced through cubes on its path until it hits a transverse cube. A 
cube, bounded by eight voxels, is said to be transverse if at least one of its voxels is 
inside the surface and one outside the surface. Transverse cubes can be identified by 
comparing values of its bounding voxels against the threshold value and setting an 
eight bit flag, bsb7b6b 5b4b 3b2b J, as 

b· = {O if the value of voxel i ~ 't 
1 1 if the value of voxel i > 't 

(1) 

A cube is transverse if its flag is of the binary value between 00000001 and 
11111110, and Figure 1 shows such a cube. 
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Fig. 1. Determining if a cube is transverse. 

Once a transverse cube is found, a further check is made to see if the ray intersects the 
surface contained within the cube. The values at the ray entry and exit points, namely 
a and p respectjvely, are calculated using an interpolation function F(u). Given a 
point u lying on one of the six square facets of a cube, F(u) is defined a<; the bi-linear 
interpolation of the values associated to the four voxels which bound the facet. The 
ray intersects the surface if the ray span defined by a and p is transverse (Figure 2), 
that is, F(a)~'t~F(p) or F(p)~'t~F(a). The actual intersection point yon the surface 
is calculated as 

'Y = a + (P - a)( F( 'Y) - F( a)) 
F(p) - F(a.) 

(2) 

Once the intersection point y has been found, the surface normal at y, and hence the 
intensity, can be computed. 
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Fig. 2. Calculating the surface intersection point y. 

The normal at y is calculated by tri-linearly interpolating the normals of the eight 
voxels bounding the cube. The normal, Gata voxel located at (x, y, z) is calculated 
using difference approximation, that is 

G=(gx,gy,gz), 

gx = F(x + l, y,z)- F(x - 1, y,z), 

gy = F(x, y + 1, z)- F(x, y-1, z), 

gz = F(x, y,z + 1) - F(x, y,z - 1). 

(3) 

With the normal, a shading technique, such as Phong shading, can he used to 
calculate the intensity at y. Figure 3 shows a surface rendered with this algorithm. 
Textures can also be mapped onto the surface for evaluating a second function in the 
dataset. This is of particular use when each voxel is associated with a vector of 
samples. In computational fluid dynamics, for example, a surface representing 
constant pressure in a volume can be displayed with temperature mapped on to it. 

Fig. 3. Direct surface rendering of CT head. 

A substantial amount of computation is required for tracking a ray through the 
volume and testing whether or not cubes are transverse along the path. To reduce this, 
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cubes in a volume are examined in a preprocessing step. This results in a volume of 
binary data, where each bit indicates whether or not a cube is transverse. The speed of 
voxel traversal can also be improved using one of the two algorithms in the literature, 
namely the fast voxel traversal algorithm (Amantides and Woo, 1987) and the octree­
based algorithm (Levoy, 1990). 

The fast voxel traversal algorithm allows a very quick traversal with just 2 floating 
point comparisons, 1 floating point addition, 1 integer addition, 2 integer 
comparisons for each transverse cube and a bit test and an integer comparison for each 
non-transverse cube. If a transverse cube k is encountered, the entry point a.k is 
calculated and F(ak) is linearly interpolated. A flag is set to indicate the entry point to 
the next cube to be examined, regardless of whether it is transverse or not. The ray is 
then continued into the next cube k+l where again the entry point ak+J and F(a.k+1) 
are calculated. The ray entry and exit points and their associated values are now known 
for the ray span in cube k and the surface intersection point can be determined. If the 
ray span is not transverse, the traversal continues with the next cuhe, for which the 
calculated entry point is already known. 

The octree-based traversal algorithm makes use of the octree data structure to skip 
over empty areas of a volume. This allows many non-transverse cubes along the ray 
path to be jumped over in a single operation. The drawback of this algorithm is that 
many calculations are required to find out which part of the octree the ray enters next 
when it leaves the previous cell. It has been found that this cost outweighs the cost of 
traversing more voxels using the previous method. 

4 Real time cutting operations 

A cut is defined by a set of cutting planes, C 1, C2, ... , Cm, whose plane normals are 
Ni. N2, ... , Nm respectively. Given a viewpoint and the position of an image plane, 
two depth buffers, namely the near depth buffer Dnear and the far depth buffer Dran 
can be constructed from the cutting planes. Both depth buffers are of the same 
resolution as the image plane, and each element of the buffers corresponds to a pixel 
in the image plane. Elements in Dnear are initialised to zero and those in Dear are 
initialised to a maximum value MAX_DEfYTH. 

For each pixel p in the image plane, cutting planes are classified into three groups 
according to the ray R(p) cast from the pixel. They are planes parallel to the ray, (that 
is, R(p)•Ni=O),· planes facing the same direction as the ray (R(p)•Ni>O) and planes 
facing the opposite direction (R(p)•Ni<O). For a plane Ci that is parallel to the ray, we 
set 

Dnear(P) ~ MAX_DEfYfH, and Drar(P) ~ 0 (4) 

if pis in the negative halfspace defined by the plane, that is, Ci(p)<O. For a plane 
facing the same direction as the ray, the depth of the intersection point between the 
ray and the plane is computed and Dnear(P) ~ max(Dnear(p),depth). Similarly, for 
a plane facing the opposite direction, the depth of the intersection point is computed 
and Drar(P) ~ min<Dear(p),depth) . 
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These two depth buffers are then used to compare with the surface points found by 
casting rays into a volume to determine whether or not a surface point should be 
displayed. Everything of a depth in front of the near depth buffer and behind the far 
buffer, is cut away. Figure 4 shows an example where a cut is made on an outer 
sphere to reveal the inner sphere. 

Fig. 4. A cut revealing an inner sphere. 

In order to avoid the whole image needing to be retraced whenever a change is made to 
the cutting planes, the direct surface rendering algorithm discussed above casts rays 
into the volume, keeping track of all surface intersections, until the ray exits the 
volume. An intersection buffer is used to store information about all surface 
intersections for each ray, which includes the intensity resulting from shading a 
surface point and a depth for each surface intersection along the ray. The layout of the 
intersection buffer is illustrated in Figure 5. 

pixel 1 ~ D(l ,2j l(l ,2s 5(1, kl)I(l, kl )I 

pixel 2 ~ 0(2, 2) 1(2, 2f)(2, k2) 1(2, k2)1 

pixel n ~ D(n, 2): l(n, 2S Sen, kn) l(n, kn)j 

ki: the number of intersections between ray i and the surface, 
D(i, j): the depth of the jth intersection between ray i and the surface, 
l(i, j): the intensity at the jth intersection between ray i and the surface. 

Fig. 5. The layout of the intersection buffer. 

With this method, a user is allowed to interactively specify a combination of cutting 
planes. These planes are then scan-converted to form the two depth buffers. The image 
is produced by simple comparison operations. For each pixel in the image plane, the 
depth of each intersection is compared with the near and far depth buffers until the 
first valid intersection is found, and the pixel is drawn according to the stored 
intensity. After the initial preprocessing stage to create the intersection buffer, there is 
no need to retrace rays through the volume at all unless a new viewpoint is required. 

In addition to intensity, other quantities could be stored, such as surface normals, 
which could allow the user to move lights over the object interactively. Multiple 
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surfaces with different thresholds can be stored in the buffer along with transparency 
and colour information, allowing semi-transparent surfaces to he manipulated. 

S Testing 

The direct surface rendering algorithm, together with cutting operations, has been 
implemented in C on a DEC Alpha 3000 model 400 workstation and tested on 
various known datasets. The datasets used include CThead (Figure 6) and MRbrain 
(Figure 7) from the University of North Carolina, and hydrogen (Figure 8) from 
AVS™. The timing obtained for a 300x300 image plane and the space usage is 
reported in Table 1. 

Fig. 6. CT head 

Figure No. Cas t 
Image 
(secs) 

6 I 21.35 
Top right 
Bottom left 
Bottom right 

7 18 .98 
Top right 
Bottom left 
Bottom right 

8 12.35 
Top right 
Bottom left 
Bottom right 

Fig. 7. MR brain 

Table I. Testing results . 

Cast Extract Buffer 
Buffer Image Size 
(secs) (secs) (Mhytes) 

43 .5 0 0.057 2. 13 
0 .08 7 
0 .093 
0 .093 

49 .86 0.06 3 .96 
0 . 12 
0.15 
0 . 13 

14.07 0 .03 0 .56 
0 .060 
0 .056 
0 .033 

Fig. 8. Hydrogen 

Marching Mesh 
Cu hes Size 
(secs) (Mhytes) 

29 .28 12.37 

39. 20 24.68 

0 .80 0 .24 

In Figure 6, a cut has been made in order to reveal the interior of the skull. Figure 7 
demonstrates that cutting operations can be used to visualise interior surfaces with the 
same threshold as the exterior surface. In this case the texture of the brain, and the 
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nasal passages are clearly visible. As shown in Figure 8, by specifying a pair of 
cutting planes a band of the surface can be displayed. The computational times for 
producing each image from the intersection buffer are given in the extract image 
column. The time taken to extract an image depends upon the complexity of the 
surface and values in the depth buffers. The more intersections there are along the ray 
before a valid intersection is found (or the ray passes beyond the far depth buffer), the 
more comparisons are required. The marching cubes column gives the time taken to 
extract a surface at the same threshold value and the storage size of the polygon mesh 
is given in the final column. 

6 Conclusions 

A method for performing interactive cutting operations on volume dataset~ has been 
designed and implemented with a direct surface rendering algorithm. With two depth 
buffers constructed from cutting planes and an intersection buffer set by using the 
direct surface rendering algorithm in a preprocessing stage, the display of an image 
requires merely simple comparison operations, thus enabling real-time cutting 
operations. The method provides users with efficiency and flexibility during 
visualisation of complex volume datasets. 

References 
Amantides J, Woo A (1987), A fast voxel traversal algorithm for ray tracing, 

Eurographics (1987), pp.3-10. 

Drebin R A, Carpenter L, Hanrahan P (1988), Volume rendering, SIGGRAPH 
Computer Graphics, 22(4):pp.65-74. 

Laur D, Hanrahan P (1991), Hierarchical splatting: A progressive refinement 
algorithm for volume rendering, SIGGRAPH Computer Graphics, 
25(4):pp.285-288. 

Levoy M (1988), Display of surfaces from volume data, IEEE Computer Graphics 
and Applications, 8(3):pp.29-37. 

Levoy M (1990), Efficient ray tracing of volume data, ACM Transactions on 
Computer Graphics, 9(3) pp.245-261. 

Lorensen WE, Cline H E (1987), Marching cubes: A high resolution 3D surface 
reconstruction algorithm, SIGGRAPH Computer Graphics, 21(4):pp.163-169. 

Ma, K., Cohen, M., and Painter, J. S. 1991, "Volume seeds: A volume exploration 
technique", The Journal of Visualization and Computer Aninulfion", 2 pp.135-
140, (1991). 

Sabella P (1988), A rendering algorithm for visualizing 3D scalar fields, SIGGRAPH 
Computer Graphics, 22(4):pp.51-57. 

Westover L (1990), Footprint evaluation for volume rendering, SIGGRAPH 
Computer Graphics, 24(4):pp.367-376. 

Wilhelms J, Van Gelder A (1992), Octrees for faster isosurface generation, ACM 
Transactions on Computer Graphics, 11(3):pp201-227. 


	Scscopy13072213170.pdf
	Scscopy13072213171.pdf
	Scscopy13072213172.pdf
	Scscopy13072213180.pdf
	Scscopy13072213181.pdf
	Scscopy13072213182.pdf
	Scscopy13072213183.pdf
	Scscopy13072213190.pdf

