3D Distance from a Point to a Triangle

Mark W. Jones
Technical Report CSR-5-95
Department of Computer Science, University of Wales Swansea

February 1995

Abstract

In this technical report, two different methods for calculating the distance between a point and a triangle in 3D space will be described. It will be shown that it is far more efficient to calculate the distance by using a rotation to make the problem 2D. Both methods are tested with relation to the production of 3D data from polygonal meshes (voxelisation).

1 Introduction

The problem of finding the distance from a point to a triangle in 3D space arose with repsect to producing 3D data from a polygonal mesh. In this case the input to the process of voxelisation [1] is a triangular mesh, and the output is voxel data - a 3D array of data values. Voxelisation is needed to overlay synthetic objects into collected data. For examples with application to the integration of objects and medical data see Wang and Kaufman [2] and for the integration of objects with terrain data for flight simulation see Cohen and Gotsman [3].
The problem is that of finding the distance from a point P_{0} to a triangle $P_{1} P_{2} P_{3}$, where P_{i} is a point in three dimensional space. This is more difficult than it seems at first due to the different possibilities that exist. The point P_{0} could be closest to the plane of the triangle, closest to an edge, or closest to a vertex. In Section 2 a method of calculating that distance in 3D is given, and in Section 3 a method which reduces the problem to 2D is described. Section 4 presents results demonstrating that the 2D method is more efficient than the 3D method.

2 3D Method

Approaching the problem in three dimensions requires the projection of P_{0} onto the plane of triangle $P_{1} P_{2} P_{3}$ to create P_{0}^{\prime} (Figure 1).

Figure 1: Calculating the distance of P_{0} from $P_{1} P_{2} P_{3}$.

The normal N_{p} of $P_{1} P_{2} P_{3}$ can be calculated as

$$
\begin{equation*}
N_{p}=P_{1} P_{2} \times P_{1} P_{3} \tag{1}
\end{equation*}
$$

The angle, α between the normal N_{p} and $P_{1} P_{0}$ is calculated

$$
\begin{equation*}
\cos \alpha=\frac{P_{1} P_{0} \cdot N_{p}}{\left|P_{1} P_{0}\right|\left|N_{p}\right|} \tag{2}
\end{equation*}
$$

The length of the vector $P_{0} P_{0}^{\prime}$ can be found using

$$
\begin{equation*}
\left|P_{0} P_{0}^{\prime}\right|=\left|P_{0} P_{1}\right| \cos \alpha \tag{3}
\end{equation*}
$$

The vector $P_{0} P_{0}^{\prime}$ can then be determined

$$
\begin{equation*}
P_{0} P_{0}^{\prime}=-\left|P_{0} P_{0}^{\prime}\right| \frac{N p}{|N p|} \tag{4}
\end{equation*}
$$

(The negative sign is used since $P_{0} P_{0}^{\prime}$ has direction opposite to that of N_{p}.) P_{0}^{\prime} can then be calculated as

$$
\begin{equation*}
P_{0}^{\prime}=P_{0}+P_{0} P_{0}^{\prime} \tag{5}
\end{equation*}
$$

If it was the case that the projection of P_{0} onto the plane lay within the triangle $P_{1} P_{2} P_{3}$, the length $\left|P_{0} P_{0}^{\prime}\right|$ (Equation 3) would be the distance of P_{0} from $P_{1} P_{2} P_{3}$.
If instead P_{0}^{\prime} falls outside the triangle, the distance to the triangle is the distance to the closest edge or vertex to P_{0}^{\prime}. In order to determine which edge or vertex P_{0}^{\prime} is closest to, the position of P_{0}^{\prime} in relation to the three vectors V_{1}, V_{2} and V_{3} must be found, (Figure 1) where

$$
\begin{equation*}
V_{1}=\frac{P_{2} P_{1}}{\left|P_{2} P_{1}\right|}+\frac{P_{3} P_{1}}{\left|P_{3} P_{1}\right|}, \quad V_{2}=\frac{P_{3} P_{2}}{\left|P_{3} P_{2}\right|}+\frac{P_{1} P_{2}}{\left|P_{1} P_{2}\right|}, \quad V_{3}=\frac{P_{1} P_{3}}{\left|P_{1} P_{3}\right|}+\frac{P_{2} P_{3}}{\left|P_{2} P_{3}\right|} \tag{6}
\end{equation*}
$$

If $f_{1}=\left(V_{1} \times P_{1} P_{0}^{\prime}\right) \cdot N_{p}$, then $f_{1}>0$ if P_{0}^{\prime} is anticlockwise of V_{1}. Similarly, f_{2} and f_{3} can be calculated for the other vectors. Using f_{1}, f_{2} and f_{3} the position of P_{0}^{\prime} in relation to the vectors V_{1}, V_{2} and V_{3} can be determined. It further has to be determined if P_{0}^{\prime} is inside the triangle, and if so the distance from the triangle is the distance calculated in Equation 3.
If P_{0}^{\prime} is clockwise of V_{2} and anticlockwise of V_{1}, it is outside the triangle if

$$
\begin{equation*}
\left(P_{0}^{\prime} P_{1} \times P_{0}^{\prime} P_{2}\right) \cdot N_{p}<0 \tag{7}
\end{equation*}
$$

and similarly for the other cases.
If P_{0}^{\prime} is found to be outside the triangle, it is either closest to a vertex, or the side. For example, assume P_{0}^{\prime} is closest to $P_{1} P_{2}$. (it is easy to apply the following to the remaining edges) The direction R, of P_{0}^{\prime} to $P_{0}^{\prime \prime}$ is given by

$$
\begin{equation*}
R=\left(P_{0}^{\prime} P_{2} \times P_{0}^{\prime} P_{1}\right) \times P_{1} P_{2} \tag{8}
\end{equation*}
$$

and the angle γ is

$$
\begin{equation*}
\cos \gamma=\frac{P_{0}^{\prime} P_{1} \cdot R}{\left|P_{0}^{\prime} P_{1}\right||R|} \tag{9}
\end{equation*}
$$

The length $P_{0}^{\prime} P_{0}^{\prime \prime}$ is calculated using

$$
\begin{equation*}
\left|P_{0}^{\prime} P_{0}^{\prime \prime}\right|=\left|P_{0}^{\prime} P_{1}\right| \cos \gamma \tag{10}
\end{equation*}
$$

and $P_{0}^{\prime} P_{0}^{\prime \prime}$ is

$$
\begin{equation*}
P_{0}^{\prime} P_{0}^{\prime \prime}=\left|P_{0}^{\prime} P_{0}^{\prime \prime}\right| \frac{R}{|R|} \tag{11}
\end{equation*}
$$

The point $P_{0}^{\prime \prime}$, which is the projection of P_{0}^{\prime} onto the line $P_{1} P_{2}$ is

$$
\begin{equation*}
P_{0}^{\prime \prime}=P_{0}^{\prime}+P_{0}^{\prime} P_{0}^{\prime \prime} \tag{12}
\end{equation*}
$$

Let

$$
\begin{equation*}
t=\frac{P_{0}^{\prime \prime}-P_{1}}{P_{2}-P_{1}} \tag{13}
\end{equation*}
$$

If $0 \leq t \leq 1, P_{0}^{\prime \prime}$ is between P_{1} and P_{2} and the distance of P_{0}^{\prime} from the line is $\left|P_{0}^{\prime} P_{0}^{\prime \prime}\right|$ as calculated in Equation 10. The distance of P_{0} to $P_{1} P_{2}$ is $\sqrt{\left(\left|P_{0}^{\prime} P_{0}^{\prime \prime}\right|^{2}+\left|P_{0} P_{0}^{\prime}\right|^{2}\right)}$. If $t<0, P_{0}$ is closest to vertex P_{1} and can be calculated as the distance $P_{1}-P_{0}$. If $t>1, P_{0}$ is closest to P_{2}.
Therefore the distance of P_{0} to $P_{1} P_{2} P_{3}$ has been calculated. It should be noted that Equations 1 and 6 can be precalculated for efficiency.

3 2D Method

The second approach is that of converting the problem into a two dimensional problem. The simplest way to achieve this is by calculating the translation and rotation matrix to rotate the triangle $P_{1} P_{2} P_{3}$ so that P_{1} lies on the origin, P_{2} lies on the z axis, and P_{3} lies in the $y z$ plane. This transformation matrix can be calculated once for each triangle in a preproccessing step, and can then be used to transform P_{0} to P_{0}^{\prime}. P_{0} can be trivially projected onto the triangles plane giving P_{0}^{\prime} by ignoring its x coordinate since the triangle is in the $y z$ plane. If P_{0}^{\prime} is inside the triangle $P_{1} P_{2} P_{3}$, the distance from the point to the triangle is simply the x coordinate of P_{0}.
Using P_{0}^{\prime}, determination of the closest part of triangle $P_{1} P_{2} P_{3}$ to P_{0} can be found by using the edge equation [4], and once determined the distance can be found in a standard way. The edge equation is simply:

$$
\begin{equation*}
E(x, y)=(x-X) d Y-(y-Y) d X \tag{14}
\end{equation*}
$$

for a line passing through (X, Y) with gradient $\frac{d Y}{d X}$ with respect to a point (x, y). If $E<0$ the point is to the left of the line, if $E>0$ to the right, and if $E=0$, it is on the line. In Figure 2 we see the different possibilities.

Figure 2: Calculating point position relative to triangle.
If P_{0}^{\prime} is left of $P_{3} P_{1}$ it is closest to $P_{3} P_{1}$ if it is to the right of $P_{3} P_{31}$ and to the left of $P_{1} P_{11}$. The proximity to the other edges of the triangle can be similarly determined. For P_{0}^{\prime} to be closest to vertex P_{1} it must be right of $P_{1} P_{11}$ and left of $P_{1} P_{12}$, where $P_{1} P_{12}$ is defined at right
angles to $P_{1} P_{2}$. Using just these edge equations, the closest vertex or edge of $P_{1} P_{2} P_{3}$ to P_{0}^{\prime} can be determined. The lines $P_{1} P_{11}, P_{1} P_{12}, P_{3} P_{31}, P_{3} P_{32}$, etc. and their directions can be precomputed, thus enabling simple applications of the edge equation to determine which part of the triangle the point P_{0}^{\prime} is closest to. Once determined, the distance can be calculated to that part in the normal way.

4 Results

The voxelisation process was implemented as in [1], with two distance functions - one the 3D version of Section 2, and one the 2D version of Section 3. The voxelisation process was carried out using both distance functions, and times were compared for various datasets. It can be seen from Table 1 that the 2D method was consistently faster than the 3D method, and in fact took a quarter of the time to compute the same dataset. The reason for such a marked difference in computation times could be put down to the number of square roots that must be computed. For the 3D method four square roots are required ($\left|P_{1} P_{0}\right|,|R|,\left|P_{0}^{\prime} P_{1}\right|$ and $\left.\left|P_{0}^{\prime} P_{0}^{\prime \prime}\right|\right)$, as opposed to one final distance calculation square root for the 2D method.

Data set	No. of triangles	Distance computations	Time 2D method	taken 3D method	Ratio 3D $\div 2 \mathrm{D}$
Octahedron	8	99576	1.017	2.917	2.87
Dodecahedron	36	1170754	8.016	33.949	4.24
Soccerball	116	3850470	25.649	111.496	4.35
Teapot	252	5717484	38.032	159.744	4.20
King	3080	17740398	144.294	519.546	3.60
Queen	2600	16378497	130.028	491.447	3.78
Bishop	2360	14092809	114.112	410.334	3.60
Pawn	1600	14791639	116.912	420.033	3.59
Knight	1524	10191575	86.113	286.889	3.33
Rook	1600	18501156	144.544	541.462	3.75

Table 1: Table showing voxelization timings
In conclusion, a two dimensional method for computing the distance of a point from a triangle has been compared against a standard three dimensional method. The results indicate that the two dimensional method performs far more efficiently than the three dimensional method, and is suited for any application where distance measurements to three dimensional triangles are required. The method was tested with particular attention to the process of voxelisation, which requires intensive use of point to triangle measurement.

References

[1] M. W. Jones. Voxelisation of polygonal meshes. In Proceedings of 13th Annual Conference of Eurographics (UK Chapter) (Loughborough, March 28-30, 1995), pages 160-171, March 1995.
[2] S. W. Wang and A. E. Kaufman. Volume sampled voxelization of geometric primitives. In Proc. Visualization 93, pages 78-84. IEEE CS Press, Los Alamitos, Calif., 1993.
[3] D. Cohen and C. Gotsman. Photorealistic terrain imaging and flight simulation. IEEE Computer Graphics and Applications, 14(2):10-12, March 1994.
[4] J. Pineda. A parallel algorithm for polygon rasterization. In Proc. SIGGRAPH '88 (Atlanta, Georgia, August 1-5, 1988), volume 22(4), pages 17-20. ACM SIGGRAPH, New York, August 1988.

