
Volume 15, (1996), Number 5 pp. 311–318

The Production of Volume Data from Triangular Meshes
Using Voxelisation

Mark W. Jones

Abstract
Voxelisation is the term given to the process of converting data from one source type into a three dimensional
volume of data values. The techniques known collectively as volume visualisation can then be applied to the
data in order to produce a graphical representation of the object. This paper gives a practical approach to the
voxelisation of data in the form of triangular meshes, and demonstrates the use of the method on various datasets.
Visualisation is achieved by a method also described in the paper.

Keywords:voxelisation; volume data; polygonal meshes; volume visualisation; volume morphing; rendering; ray-
tracing;

1. Introduction

In this paper the production of volume data from surface
meshes is examined. An algorithm to convert closed trian-
gular meshes into volume data is given along with optimi-
sations which make the conversion realistically possible on
most computers. The visualisation of this data is explored
with a few examples given. The motivation behind this work
is to produce volume data from triangular meshes in order to
achieve realistic metamorphosis between the mesh objects.
Volume morphing, whilst retaining object coherency, is dif-
ficult to achieve, and the disc morphing method1 has given
good results. In order to apply this morphing technique the
data must be available as volume data.

This work fits in with other work that has sought to vox-
elise object data of one description into volumetric data
with the specific aim of using a unifying approach to the
visualisation of data from different sources. James Kayija
stated at SIGGRAPH ’912 ": : : in 10 years, all rendering
will be volume rendering." He views volume rendering as
the only realistically scalable rendering method for complex
scenes. Through the use of advanced volume visualisation
techniques it would also be possible to view visualisation
as an all encompassing rendering process. Such a model of
rendering would allow the consistent application of visual
effects to all objects, rather than applying various rendering
methods to several models and combining results.

The goals of this paper are to give specific details of a
voxelisation method for triangular meshes, and to demon-

strate the method does not suffer from many of the problems
of existing voxelisation methods. The method is primarily
aimed at producing voxel data for morphing. Visualisation
of various meshes is presented in this paper to demonstrate
that this voxelisation process is successful and may also be-
come a worthwhile technique simply to enable efficient vi-
sualisations of certain data sets. This process of voxelisation
and subsequent visualisation is supported by evidence of a
comparison of results from this method and a traditional ray-
tracer - POV-Ray.

Most previous voxelisation algorithms convert
solid objects into voxel data using spatial-occupancy
enumeration3�6. The result of this process is a three
dimensional regular array of cubes, sometimes known as a
cuberille. The main problem associated with this method is
the fact that the model is limited by the resolution of the
grid. The result of coarse grids is an image which is very
blocky in appearance due to the fact that only cube faces are
displayed. Since there are only 6 cube faces, the resulting
image only has 6 different normals with which to be shaded.
Shading algorithms such as depth shading7 and congradient
shading8 attempt to improve this situation, but only manage
to reduce surface artifacts slightly. As mentioned, coarse
grids increase this problem, and as such this method suffers
badly when a close view of the surface is required.

Volumetric data is produced using filters9, which can then
be volume rendered to produce anti-aliased images. The
technique is described for objects such as spheres and cones,
but detailed descriptions for triangular meshes are not given.

c
 The Eurographics Association and Blackwell Publishers 2000.Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.



Mark W. Jones /The Production of Volume Data from Triangular Meshes Using Voxelisation

Where this paper differs from previous work is that it pro-
vides the following :

� a detailed description of a practical approach to producing
voxel data,

� production of voxel data which results in accurate images
when rendered,

� details of optimisations which make the process realistic,
� details of the rendering algorithm used to achieve a high

quality visualisation,
� a comparison in time and quality of the images produced

with those of a traditional renderer - POV-Ray.

Details about the method are given in Section 2. Section 3
shows how the efficiency of the algorithm can be increased,
and Section 4 discusses the results for some meshes.

2. Production of voxel data

Many methods exist for the visualisation of three dimen-
sional voxel data, but they can be broadly divided into
two categories – direct volume rendering and isosurfacing.
Isosurfacing10 does not apply in this case since it aims to pro-
duce a surface mesh from volume data. Using this method a
surface mesh would be produced from volume data, which
had been produced from a surface mesh. The methods of
volume rendering11�15 produce images directly from the
volume data and by using accurate optical models16�19 the
method can be used to effectively model various lighting ef-
fects such as scattered light, clouds and haze. Many of these
methods have been implemented using hardware20�23, and
as prices decrease these systems will become widely avail-
able.

Many methods produce images by converting the origi-
nal values into opacity depending upon some function. This
function usually states that regions of large gradient, that is
object interfaces, are the most interesting parts of the vol-
ume and are to be visualised. Any voxel model produced
from surface mesh data must be able to distinguish the ob-
ject interface from the interior of the object and the surround-
ing empty uninteresting portions of the data set. One simple
method would be to assign voxels a value depending upon
whether they are inside or outside the object:

f (x;y;z) =

8<
:
�1 if (x;y;z) is outside the surface
0 if (x;y;z) is on the surface
1 if (x;y;z) is inside the surface

(1)

It is assumed throughout this paper that a voxel is a point
in 3D space. The advantage of this function is that a three
dimensional scan conversion algorithm can be employed to
determine the state of each voxel within the domain. This
results in a fast conversion of the object into voxel data, but
the surface produced is highly dependent upon the density
of the chosen voxel data. As mentioned before, images pro-
duced from such data often exhibit a blockiness24 because

a binary decision is being made at each voxel – it is either
inside or not. In order to get a smoother description of the
surface, a function which varies smoothly in the region of a
surface is required. The function selected for this method is
the distance function defined as:

f (x;y;z) =

8<
:
�dist(x;y;z) if (x;y;z) is outside
0 if (x;y;z) is on
dist(x;y;z) if (x;y;z) is inside

(2)

wheredist(x;y;z) is the Euclidean distance from(x;y;z) to
the closest point on the surface. This results in a volume that
represents a continuous function sampled at discrete voxel
locations, that is not so dependent upon the density of the
voxel data25. Using the distance function has the effect that
the voxelisation process results in a smoother representation
of the original surface. This can be seen in the comparison
between the images produced using this method and the im-
age produced using POV-Ray in the results section. Such
meshes are usually a tesselated approximation of a smooth
surface, and thus the smoothing introduced by the voxeli-
sation function may be desirable. Certainly the voxelisation
process and subsequent surface rendering produce far better
images for these meshes.

Since voxels are considered to be points and it is assumed
that the surface mesh is closed, there is a notion of whether
a point is inside the surface. As a result of using the dis-
tance function of Equation 2, points inside the surface are
positive, and points outside the surface are negative. This
method produces coherent surfaces if we assume no surface
detail is smaller than a cell bounded by 8 voxels. That is,
all points outside the surface in the original representation
will be outside in the voxelised representation (similarly for
inside). The only occasion that this is not true is when the
original surface mesh passes into an 8 voxel bounded cell,
with all voxels remaining negative (outside).

This data can be visualised using the direct surface ren-
dering method26. The algorithm bears a resemblance to the
direct volume rendering method in principle, but is only in-
terested in the surface contained in the volume, rather than
the intensity and colour of every voxel. For each pixel in
the image plane, a ray is cast into the volume and is traced
through cubes on its path until it hits a transverse cube. A
cube, bounded by eight voxels, is said to be transverse if at
least one of its voxels is inside the surface and one outside
the surface, where the surface is defined as an isosurface of
value τ. Transverse cubes can be identified by comparing
values of its bounding voxels against the threshold value and
setting an eight bit flag,b8b7b6b5b4b3b2b1, as:

bi =

�
0 if the value of voxeli � τ
1 if the value of voxeli > τ (3)

A cube is transverse if its flag is of the binary value be-

c
 The Eurographics Association and Blackwell Publishers 2000.



Mark W. Jones /The Production of Volume Data from Triangular Meshes Using Voxelisation

tween 00000001 and 11111110. Once a transverse cube is
found, a further check is made to see if the ray intersects the
surface contained within the cube. Given the ray entry and
exit points, namelyα andβ respectively, the function values
at those points are calculated using an interpolation function
F(δ). Given a pointδ lying on one of the six square facets
of a cube,F(δ) is defined as the bilinear interpolation of the
values associated to the four voxels which bound the facet.
The ray intersects the surface if the ray span defined byα and
β is transverse, that is,F(α)� τ<F(β) orF(β)� τ<F(α).
The actual intersection pointγ on the surface is calculated as

γ = α+(β�α)
�

F(γ)�F(α)
F(β)�F(α)

�
(4)

Once the intersection pointγ has been found, the surface
normal atγ, and hence the intensity, can be computed.

The normal atγ is calculated by trilinearly interpolating
the normals of the eight voxels bounding the unit cube. The
normal,G at a voxel located at(x;y;z) is calculated using
difference approximation, that is

G= (gx;gy;gz);
gx = F(x+1;y;z)�F(x�1;y;z);
gy = F(x;y+1;z)�F(x;y�1;z);
gz = F(x;y;z+1)�F(x;y;z�1):

(5)

With the normal, a shading technique, such as Phong
shading, can be used to calculate the intensity atγ.

3. Increasing the efficiency

The main problem with a naive approach to the production
of the voxel data using the distance function is the fact that
the complexity of the algorithm is so high. If the number of
triangles in the mesh isN and the size of the voxel data set
in each dimension isX, Y, andZ respectively, the distance
function is calculatedNXYZtimes.

Taking a mesh of 100 triangles and a volume of 1003 vox-
els, for example, would result in 100 million calculations of
the distance function. Since each function computation in-
volves calculating the distance to a three dimensional trian-
gle, and involves at least a square root, this is costly in terms
of computer processing. Three areas for acceleration can be
identified:

� reducing the number of voxels for which the distance has
to be computed,

� making the distance calculation as efficient as possible,
� reducing the number of triangles which the distance has

to be computed with.

These three areas are all addressed in the next sections.

3.1. Reduction of distance function calculations

It can be observed that it is not necessary for the value of
every voxel to be accurately computed. In the direct surface
rendering phase, the algorithm examines each cube, bounded
by eight voxels, along a ray path. When it encounters a cube
which contains the object interface it determines the values
at the ray entry and exit points. If those values indicate there
is a surface interface along the ray, the position of the surface
is determined, and a surface normal is calculated. Voxel val-
ues at the eight vertices of the cube need to be known in order
to determine the surface. The 6-neighbours (two in each of
thex, y andzdirections) of each voxel also need to be known
in order to calculate the surface normal. In other words, only
the values of voxels near the actual surface are required in
order to display the surface. At all other voxels an indica-
tion of whether the point is inside or outside the surface is
sufficient. This leads to a practical method for reducing the
computational cost by restricting the distance computation
to those voxels near the surface interface.

Each voxel is associated with two fields, namely state and
distance. The state field indicates whether a voxel is interior
(1), exterior (�1) or on the surface mesh (0), and is first
computed by scan-converting the object. The state function
(Equation 6) can be calculated for each voxel(x;y;z).

f (x;y;z) =

z+1

∑
k=z�1

y+1

∑
j=y�1

x+1

∑
i=x�1

state of voxel(i; j ;k) (6)

For a voxel(x;y;z) there is no need to apply the distance
function (Equation 2), if:

� its state field is zero, or
� f (x;y;z) = 27 or�27 and f (x0;y0;z0) = 27 or�27 for

each 6-neighbour(x0;y0;z0).

It is obvious that there is no need to apply the distance
function when the state field is zero which indicates the
voxel is on the surface. The second condition shows that
if a voxel and all its 26-neighbours are all interior (or all
exterior) to the surface and all the 26-neighbours of its 6-
neighbours have the same state, its distance value will not
influence the surface display in any way. The first part states
that a voxel need not be known if it is not used during lin-
ear interpolation of position, and the second part states that
a voxel need not be known if it is not used during deter-
mination of the surface normal. This process eliminates all
unnecessary voxels from the expensive distance computation
by identifying those voxels, and only those voxels, for which
the distance function must be calculated.

If the number of voxels on each slice for which the dis-
tance must be calculated isRi , the number of distance calcu-
lations is nowN∑z

k=1Rk. UsuallyRi is less than bothX and
Y, therefore this method results in a reduction of an order of
magnitude of the number of distance calculations.

c
 The Eurographics Association and Blackwell Publishers 2000.



Mark W. Jones /The Production of Volume Data from Triangular Meshes Using Voxelisation

3.2. Point to triangle distance calculation

During the computation of the voxel data, the distance from
each voxel to the surface must be found. This requires the
calculation of the distance between a 3D point,P and a tri-
angle in 3D,P0P1P2. Since this is likely to be done many
times, and is the most expensive operation in the algorithm,
it is worth examining in depth to create efficient code for the
function.

It can be observed that there are several possible cases:

� the point could be closest to a vertex of the triangle (P0,
P1 or P2)

� the point could be closest to an edge of the triangle (P0P1,
P1P2 or P2P0)

� the point could be closest to an interior point of the trian-
gle. (P0P1P2)

It would be costly to calculate the distance to each pos-
sible case and then use that to determine the minimum dis-
tance. It is far better to determine which case is applicable,
and then calculate the distance only once for each triangle.

Two approaches for the calculation of point to triangle dis-
tances were implemented and compared27. The first calcu-
lated the distance in three dimensions, whereas the second
rotated the triangle to make the problem 2D. It was found
that the second method, which is described here, is the more
efficient by a factor of 4. The simplest way to calculate the
distance is by determining the translation and rotation ma-
trix to rotate the triangleP0P1P2 so thatP0 lies on the origin,
P1 lies on thez axis, andP2 lies in theyzplane.

This transformation matrix can be calculated once for
each triangle in a preprocessing step, and can then be used
to transformP to P0. P0 can be trivially projected onto the
triangles plane givingP00 by ignoring itsx coordinate since
the triangle is in theyz plane. If P00 is inside the triangle
P0P1P2, the distance from the point to the triangle is simply
thex coordinate ofP.

Using P00, determination of the closest part of triangle
P0P1P2 to P can be found by using the edge equation28, and
once determined the distance can be found in a standard way.
The edge equation is simply:

E(x;y) = (x�X)dY� (y�Y)dX (7)

for a line passing through(X;Y) with gradient dY
dX with re-

spect to a point(x;y). If E < 0 the point is to the left of the
line, if E > 0 to the right, and ifE = 0, it is on the line. In
Figure 1 we see the different possibilities.

If P00 is left of P2P0 it is closest toP2P0 if it is to the
right of P2P21 and to the left ofP0P01. The proximity to the
other edges of the triangle can be similarly determined. For
P00 to be closest to vertexP0 it must be right ofP0P01 and
left of P0P02, whereP0P02 is defined at right angles toP0P1.
Using just these edge equations, the closest vertex or edge

P2
P3

P1

P
31

P11

P’0

Figure 1: Calculating point position relative to triangle.

of P0P1P2 to P00 can be determined. The linesP0P01, P0P02,
P2P21, P2P22, etc. and their directions can be precomputed,
thus enabling simple applications of the edge equation to de-
termine which part of the triangle the pointP00 is closest to.
Once determined, the distance can be calculated to that part
in the normal way.

3.3. Reduction of the number of triangles

As mentioned in the previous section the distance must be
calculated to each triangle in order to determine the mini-
mum distance to the surface. It is obvious that some triangles
are far away from the voxel in question and should not have
their distance calculated from the voxel. The complexity of
the algorithm can be reduced further by determining these
triangles quickly and eliminating them from the process of
calculating the minimum distance from a voxel to a surface.

Using the methods of the previous sections results in a
shell of known voxel values surrounding the surface which
represents the original triangular mesh. From Section 3.1 we
know that the furthest any calculated voxel can be from the
surface is the distance covered by three diagonal voxels –
2
p

3 units.

A simple method of removing triangles from the process
is that of rejecting immediately any triangle whose plane is
greater than 2

p
3 units away from the current voxel. Using

the rotation method of the previous section the distance to
the plane is known as soon as the appropriate transforma-
tion has been applied to find the transformedx coordinate
of the voxel. Since this can be calculated immediately for
each triangle, a minimum of calculation is carried out upon
the triangle. In addition to this we know that if the trans-
formedy coordinate of the voxel is greater than 2

p
3 units

away from the minimum and maximumy coordinate of the
triangle, then the triangle can be rejected immediately. Simi-
larly for thezcoordinate. This introduces just four new com-
parisons.

This does not remove triangles completely from the pro-
cess, but does remove them from theclosest partand dis-
tance calculations. It is shown by the results (Section 4) that

c
 The Eurographics Association and Blackwell Publishers 2000.



Mark W. Jones /The Production of Volume Data from Triangular Meshes Using Voxelisation

Data set No. of Distance % of voxels Time
triangles computations calculated taken

Octahedron 8 97128 5.12% 0.350
Dodecahedron 36 1170754 14.65% 1.467

Soccerball 116 3850470 15.24% 4.216
Teapot 252 5717484 10.98% 7.233

King 3080 17740398 2.67% 24.349
Queen 2600 16378497 2.92% 22.216
Bishop 2360 14092809 2.76% 19.583

Pawn 1600 14791639 4.28% 19.766
Knight 1524 10191575 3.09% 14.133

Rook 1600 18501156 5.35% 24.499

Table 1: Table showing voxelization timings

the time to produce volume data is reduced by about 50%
using this method.

4. Results

The voxelisation process was implemented in C on a
275Mhz Alpha. The three acceleration steps of Section 3
were included in the implementation. Several meshes were
voxelised – octahedron, dodecahedron (Figure 2(a)), soccer-
ball (Figure 2(b)), teapot, and chess pieces (Queen – Fig-
ure 3(a)). In each case the triangular mesh was converted into
a voxel data set of size 603 (216,000 voxels), for which the
timing is given in Table 1. The dodecahedron and soccerball
(Figures 2(a) and 2(b)) show that the voxelisation process is
effective for data which contains flat faces and sharp edges
which we wish to be retained. The queen chess piece (Fig-
ure 3(a)) demonstrates that fine surface details are not lost by
the voxelisation process. The smooth curvature of the piece
is retained, and small details such as the ridge halfway up,
and the knob on the top are still visible. Although voxelised
at 603 the piece only occupies an area of 15 voxels squared
at the base, and about 3 voxels squared at the apex. The im-
age in Figure 3(b) shows pawn data combined with CT head
data and demonstrates that one single visualisation technique
can be used to display data which is originally from differ-
ent sources. In fact the facets visible at the base of the pawn
show that in this case the voxelisation is limited by the orig-
inal triangular mesh.

The mesh data set and the number of triangles in the data
set is given in the first two columns of Table 1. The third
column gives the number of times the distance was com-
puted between a voxel and a triangle. The percentage of the
number of voxels that enter the distance calculation to the
number of total voxels is given in column 4, with the time
taken to produce the voxel data, in seconds, given in the fi-
nal column.

In order to show the results of the acceleration techniques

over the naive method an additional table (Table 2) shows the
results for the queen data set which can be regarded as typ-
ical. The first line gives the timing for the brute force naive
method. The second line gives the timing for a method using
the first two optimisations, with the final giving the timing
for all three methods.

Algorithm Time taken

Naive method 30 mins.
With 3.1 and 3.2 52.331 secs.
With all methods 22.216 secs.

Table 2: Table showing voxelization timings for different ac-
celeration techniques.

The final comparison was that of the voxelisation method
and subsequent visualisation compared with the rendering
of the original mesh using POV-Ray. The queen data set was
used for this comparison, and the results are presented in Ta-
ble 3. As can be seen, the combined voxelisation and direct
surface rendering of the data set is quicker than the POV-
Ray ray-tracing of the original mesh. In this case the results
of the direct surface rendering visualisation are more pleas-
ing than the POV-Ray rendering (Figure 4). This is due to
the fact that the queen mesh has been smoothed as a result
of the voxelisation process. For the record, the voxel data set
occupies 860Kbytes and the POV-Ray text input file occu-
pies 650KBytes.

Future extensions to this work could involve extending
visual effects by incorporating shadows, fog and global il-
lumination complementing the already existing reflectance
model.

In conclusion, a useful method for the voxelisation of tri-
angular meshes has been presented, along with the visual-
isation process. This method works well and robustly for

c
 The Eurographics Association and Blackwell Publishers 2000.



Mark W. Jones /The Production of Volume Data from Triangular Meshes Using Voxelisation

Computation Time taken

Voxelisation 22.2 secs.
Direct surface rendering 42.6 secs.
POV-Ray rendering 120.0 secs.

Table 3: Table showing voxelization and POV-Ray compar-
ison.

arbitrary closed meshes, and computes the data in a realis-
tic time. In order to achieve this three acceleration methods
were described and implemented. The first was to reduce the
number of voxels the distance is computed for, the second
was to achieve an efficient implementation of the point to tri-
angle distance function, and the third was to reduce the num-
ber of triangles the distance calculation is performed upon.
The results of the method have been visualised using a gen-
eral volume visualisation technique, and inspection shows
the images to be accurate with respect to the original model.
Some smoothing of the voxelised data takes place due to
the distance function used, which can be desirable. Compar-
isons have been made between this rendering process and
a conventional ray-tracing package - POV-Ray, which show
that equivalent images are produced, smoother surfaces are
rendered and less time is taken to produce the images. It is
envisaged that as scenes become more complex the voxeli-
sation and subsequent direct surface rendering process will
scale better than standard ray-tracing.

References

1. M. Chen, M. W. Jones, and P. Townsend. Methods
for volume metamorphosis. InEuropean Workshop
on Combined Real and Synthetic Image Processing for
Broadcast and Video Production (Hamburg, Germany),
November 1994.

2. T. T. Elvins. A survey of algorithms for volume visu-
alization. Computer Graphics, 26(3):194–201, August
1992.

3. A. Kaufman. An algorithm for 3D scan-conversion of
polygons. Proc. of Eurographics ’87, Amsterdam, The
Netherlands, pages 197–208, August 1987.

4. G. Frieder, D. Gordon, and R. A. Reynolds. Back-to-
front display of voxel-based objects.IEEE Computer
Graphics and Applications, 5(1):52–60, January 1985.

5. D. Gordon and J. K. Udupa. Fast surface tracking in
three dimensional binary images.Computer Vision,
Graphics, and Image Processing, 45:196–214, 1989.

6. J. D. Foley, A. Dam, S. K. Feiner, and J. F. Hughes.
Computer Graphics, Principles and Practice, 2nd ed.
Addison Wesley, 1990.

7. D. Gordan and J. K. Udupa. Image space shading of
three-dimensional objects.Computer Vision, Graphics,
and Image Processing, 29:361–376, 1985.

8. D. Cohen, A. Kaufman, R. Bakalash, and S. Bergman.
Real time discrete shading.The Visual Computer, 6:16–
27, 1990.

9. S. W. Wang and A. E. Kaufman. Volume sampled vox-
elization of geometric primitives. InProc. Visualization
93, pages 78–84. IEEE CS Press, Los Alamitos, Calif.,
1993.

10. W. E. Lorensen and H. E. Cline. Marching Cubes :
A high resolution 3D surface construction algorithm.
In Proc. SIGGRAPH ’87 (Anaheim, Calif., July 27-
31, 1987), volume 21(4), pages 163–169. ACM SIG-
GRAPH, New York, July 1987.

11. M. Levoy. Efficient ray tracing of volume data.ACM
Transactions on Graphics, 9(3):245–261, July 1990.

12. P. Sabella. A rendering algorithm for visualizing 3D
scalar fields. InProc. SIGGRAPH ’88 (Atlanta, Geor-
gia, August 1-5, 1988), volume 22(4), pages 51–57.
ACM SIGGRAPH, New York, August 1988.

13. L. Carpenter R. A. Drebin and P. Hanrahan. Volume
rendering. InProc. SIGGRAPH ’88 (Atlanta, Georgia,
August 1-5, 1988), volume 22(4), pages 65–74. ACM
SIGGRAPH, New York, August 1988.

14. L. Westover. Footprint evaluation for volume render-
ing. In Proc. SIGGRAPH ’90 (Dallas, Texas, August 6-
August 10, 1990), volume 24(4), pages 367–376. ACM
SIGGRAPH, New York, August 1990.

15. C. Upson and M. Keeler. V-Buffer : Visible volume
rendering. InProc. SIGGRAPH ’88 (Atlanta, Georgia,
August 1-5, 1988), volume 22(4), pages 59–64. ACM
SIGGRAPH, New York, August 1988.

16. R. A. Crawfis and N. Max. Texture splats for 3D scalar
and vector field visualization. InProc. Visualization 93,
pages 261–266. IEEE CS Press, Los Alamitos, Calif.,
1993.

17. N. Max. Optical models for volume rendering. In
Visualization in Scientific Computing, pages 35–40.
Springer-Verlag, Wein New York, January 1995.

18. H. Meinzer, K. Meetz, D. Scheppelmann, U. Engel-
mann, and H. J. Baur. The heidelberg ray tracing model.
IEEE Computer Graphics and Applications, 11(6):34–
43, November 1991.

19. W. Krueger. The application of transport theory to vi-
sualization of 3D scalar data fields. InProc. Visualiza-
tion 90, pages 273–280. IEEE CS Press, Los Alamitos,
Calif., 1990.

20. A. Kaufman and R. Bakalash. Memory and processing

c
 The Eurographics Association and Blackwell Publishers 2000.



Mark W. Jones /The Production of Volume Data from Triangular Meshes Using Voxelisation

architecture for 3D voxel-based imagery.IEEE Com-
puter Graphics and Applications, 8(6):10–23, Novem-
ber 1988.

21. H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Gold-
feather, D. Ellsworth, S. Molnar, G. Turk, B. Tebbs, and
L. Israel. Pixel-Planes5: A heterogenous multiproces-
sor graphics system using processor-enhanced memo-
ries. In Proc. SIGGRAPH ’89 (Boston, Mass., July
31-August 4, 1989), volume 23(3), pages 79–88. ACM
SIGGRAPH, New York, July 1989.

22. T. S. Yoo, U. Neumann, H. Fuchs, S. M. Pizer,
J. Rhoades T. Cullip, and R. Whitaker. Direct visual-
ization of volume data.IEEE Computer Graphics and
Applications, 12(4):63–71, July 1992.

23. D. Cohen and C. Gotsman. Photorealistic terrain imag-
ing and flight simulation. IEEE Computer Graphics
and Applications, 14(2):10–12, March 1994.

24. U. Tiede, K. H. Höhne, M. Bomans, A. Pommert,
M. Riemer, and G. Wiebecke. Investigation of medi-
cal 3D-rendering algorithms.IEEE Computer Graphics
and Applications, 10(2):41–53, March 1990.

25. M. W. Jones and M. Chen. A new approach to the
construction of surfaces from contour data.Computer
Graphics Forum, 13(3):C–75–C–84, September 1994.

26. M. W. Jones and M. Chen. Fast cutting operations on
three dimensional volume datasets. InVisualization
in Scientific Computing, pages 1–8. Springer-Verlag,
Wien New York, January 1995.

27. M. W. Jones. 3D distance from a point to a triangle.
Technical Report CSR-5-95, Department of Computer
Science, University of Wales, Swansea, February 1995.

28. J. Pineda. A parallel algorithm for polygon rasteriza-
tion. In Proc. SIGGRAPH ’88 (Atlanta, Georgia, Au-
gust 1-5, 1988), volume 22(4), pages 17–20. ACM SIG-
GRAPH, New York, August 1988.

c
 The Eurographics Association and Blackwell Publishers 2000.



Mark W. Jones /The Production of Volume Data from Triangular Meshes Using Voxelisation

Figure 2: (a) Voxelised dodecahedron. (b) Voxelised soccerball.

Figure 3: (a) Voxelised chess piece (b) Voxelised CThead and pawn.

Figure 4: (a) Mesh rendered using POV-Ray. (b) Voxelised mesh direct surface rendered.

c
 The Eurographics Association and Blackwell Publishers 2000.


