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Abstract

Voxelisation is the term given to the process of
converting data from one source type into a three
dimensional volume of data values. The tech-
niques known collectively as volume visualisa-
tion can then be applied to the data in order to
produce a graphical representation of the object.
This paper gives a new practical approach to the
voxelisation of data which fills the entire volume.
Its use is demonstrated on various datasets such
as triangular mesh objects, CT data, and objects
defined by trivariate functions.

1 Introduction

The emerging field of volume graphics [1] is
fast becoming an important subfield of computer
graphics. It has grown from the progress made
within the research area of volume visualisation
techniques. Whilst volume visualisation aims to
produce meaningful imagery of large volumet-
ric data, volume graphics is the wider study of
the input, storage, construction, modelling, anal-
ysis, manipulation, display and animation of spa-
tial objects in a true three-dimensional form.

The need for the voxelisation of objects into
the volume domain is two-fold. Firstly volume
graphics has shown itself to be readily scalable
for large scenes. Secondly it allows the mix-
ture of a variety source data types and allows the
consistent application of viewing parameters and
conditions.

Broadly voxelisation falls into two areas –
those that produce a true three dimensional en-
coding that fills the volume space, and those
which encode voxels just in the vicinity of the
surface. We would argue that both methods are

equally valid – the former because it allows new
effects that we demonstrate in this paper, and the
latter because it saves on storage space.

In this paper Section 2 will examine the cur-
rent methods for producing voxelised objects.
Section 3 will demonstrate shell distance fields
and Section 4 will demonstrate our new method
for producing space filled voxelisations. This
method is demonstrated to be effective from
the viewpoints of rendering, computational time,
and accuracy of representation.

2 Background

Generally objects fall into one of two categories
for voxelisation: Solid Models and Surface
Representations. In the case ofsolid mod-
elling, the notion of interior, surface and exterior
is available for each object. Solid objects could
be defined as a closed collection of polygons rep-
resenting the surface, as constructive solid ge-
ometry, by sweeping or extruding, as octrees in-
dicating spatial occupancy, implicitly, and using
patches.

The basic method for converting such data
types is spatial occupancy. A regular grid of
voxels is placed over the domain of the source
object, and for each voxel a binary decision is
made as to whether each voxel is inside or on,
or outside the object [2, 3]. Each data type has
been given a different treatment in the literature
which takes advantages of the source data type
to increase the speed of conversion. The recog-
nised problem with this method is that the rep-
resentation produces a discrete surface which is
recognisably blocky. Simple solutions have been
to increase the resolution of the data set, but this



in turn increases the memory requirements and
rendering times. It was identified early on that
the primary cause of the visible artifacts is the re-
construction of the surface normal from the vox-
elised data. A thorough examination of the nor-
mals by Höhne et al. [4], indicated that whilst it
is possible to use various sampling strategies to
overcome this problem, it is preferable to have
access to grey-scale data, such as that from CT
scan data. In that case we no longer have a bi-
nary classification – each voxel takes a value de-
pending upon its density.

One method by which this can be achieved is
by using a different sampling technique to that of
the abovementioned single central sample. Wang
and Kaufman [5] volume sample primitives us-
ing a spherical volume set at 3 units. Calcu-
lating this for arbitrary objects (e.g. triangular
meshes) is difficult, so they have specific func-
tions to volume sample each kind of primitive
(sphere, cone etc.). The method produces val-
ues in the vicinity of the object, and therefore the
volume is not space filled. This has advantages
in terms of storage, but disadvantages for appli-
cations mentioned in Section 4.1. Sr´amek and
Kaufman [6] identify that a linear density profile
in the vicinity of the surface give the best results.
They produce such a profile using convolution
with a box filter. Again this produces values in
the vicinity of the object (whereas this paper is
primarily concerned with space filled voxelisa-
tions). Their method may benefit from the im-
provements made in this paper (as will become
clear later). They suggest a method for vox-
elisingsurface representedobjects in which the
surface is voxelised using a field, such that a thin
solid is produced during visualisation – e.g. a
plane would become a box. Although the meth-
ods of Section 3 onwards are discussed in the
context of solid modelling, they could be applied
to surface representations in a similar manner
(i.e. by creating slightly thick objects in place
of infinitely thin surfaces).

Sampling theory [7] suggests that a stochas-
tic sampling should provide better images as the
high frequencies will be dispersed. Poisson sam-
pling using a minimum distance constraint (Pois-
son disk), such that no two points are closer than

a certain distance produces a good distribution
for sampling but is expensive to calculate. In
this instance the computational expense for cal-
culating a Poisson disk for one cube and then
using the same sampling pattern throughout the
data set would be insignificant compared to the
other operations. A simpler, but not much less
effective method, is that of jittering. Each sam-
ple is randomly perturbed from its centre on a
regular grid, but is still located within its grid
cell. This is simple to calculate (and implement)
as it just involves a random shift of the sample
point. Briefly, experiments demonstrated that jit-
tering improved quality for low sampling rates,
but did not give a noticeable improvement for
higher rates.

We can observe that sampling within one slice
of a grid of voxel values is similar to rendering
the mesh to a pixel image. Therefore we can ac-
celerate the voxelisation process by using hard-
ware renderers to render the triangular mesh to
an image. The image can then be processed to
determine if each pixel was inside or outside the
object. Fang [3] has covered this process for
point sampling, but this work could be easily ex-
tended to oversampling by simply increasing the
size of the image, and decreasing the stepping
size through the volume. This is fine in the case
of regular sampling, but jittering presents prob-
lems using this method.

Sampling is a valid method for producing vox-
elised objects, but it suffers from resolution prob-
lems (blocky images), and restricted orientation
of normals. One class of object for which this is
not a problem is that of implicit functions. For
example rendering a sphere on a grid of203 can
give the top left image in Figure 1. The grey level
normals are calculated using trilinear interpola-
tion from the 8 normals creating a cube contain-
ing the intersection point with the ray. As can
be seen these normals give a high accuracy for
shading. The voxel grid is calculated by evaluat-
ing the function of the implicit surface – in this
casef(x; y; z) = x2 + y2 + z2 � r2. Various
other implicit functions have been voxelised and
rendered (also Figure 1), including some which
have been genetically bred [8]. In all cases the
normals from such data produce naturally shaded



objects. All images in this paper have been ren-
dered using direct surface rendering [9]. Most
images in Figures 1–4 take about 1 second to
render at300 � 300 pixels (all timings are on a
PIII-450).

The implicit functions encoded as above can
be considered asspace filledvoxelisation – there
is a value at every point in the domain of the
object. The sampled voxelisations only produce
values in the vicinity of the object and can be
considered to beshellvoxelisations. In the next
section we shall examine distance fields, both in
their space filled and shell incarnations.

Figure 1: Rendering of sphere and other implicit
functions.

3 Distance Fields

3.1 Background

We have previously used distance fields as an in-
termediate step to create triangular meshes from
contour data [10]. The use of the distance field
helped avoid costly and difficult point correspon-
dence problems – particularly in 1 to many and
many to many branching cases. We discovered
early on that the normals calculated from these
distance fields (using trilinear interpolation as
above) have the effect of visually smoothing the
object, and that solid objects (obtained from con-
tours or irregular points) can be represented quite
accurately using this method.

The distance field is calculated by the follow-
ing procedure – for each voxel we measure the
distance from the voxel to the object. If we are
inside the object we set the value to be negative,

if we are outside we use positive. On the sur-
face we use zero. This signed distance field has
proven to be of use for many years, and has be-
come widespread for many applications within
the field of graphics in the last few years, al-
though its use for modelling objects has not been
fully explored. Figure 2 demonstrates the vox-
elisation of a Rook chess piece (original object
is a triangular mesh). Representing the object as
a distance field compares quite favourably with
the other representation methods.

Figure 2: Rendering of rook voxelised using (a)
1 regular sample, (b)7� 7� 7 regular samples,
(c) distance shell

The main drawback of the distance field
method is that it is computationally expensive
when a complete space filled distance field is
calculated. Table 1 gives the timings for cre-
ating the voxelised data set. The full distance
data set (377 seconds) evaluates the distance at
each voxel (216,000) to the closest point on a
mesh of about 1500 triangles. This takes into ac-
count very efficient methods for calculating the
distance of a point to a triangle [11], and using an
octree as mentioned in Section 4.3. For another
example it takes approximately 8 hours to con-
vert the UNC CThead (14 million voxels) into
a space filled distance field (also using accelera-
tion methods such as an octree). This huge com-
putational expense led us to develop alternative
methods which are discussed next.

3.2 Distance Shells

It can be observed that it is not necessary to do
this much work if we are just interested in en-
coding the surface and do not need a space filled
distance field – we can voxelise the object just in
the vicinity of the surface. We have called such a
voxelisation adistance shell– the computational



Samples per voxel time (secs.)
1� 1� 1 0.06
7� 7� 7 9.25

Distance shell 10.09
Full distance 377.32

Table 1: Computational time for voxelising rook
(60� 60� 60 voxels)

expense is significantly less, and the surface rep-
resentation is far superior when compared to the
oversampling method which takes an equivalent
time (Table 1 and Figure 2).

The shell for which the distance must be cal-
culated is given by the set of voxelsSn. First we
define a segmentation functionf as:

f(v) =

�
1 if v is inside the surface
0 otherwise

wherev 2 I
3

(1)

Then for each voxel,v, we addv and v26
(the 26 neighbours ofv) to Sv, when f(v) =

1 and9p such thatf(p) = 0 wherep 2 v26.

Calculating the distance for these voxels is
enough to encode the surface – the uncalculated
voxels are either inside the surface, and all their
neighbours are inside the surface, or outside the
surface with all their neighbours outside the sur-
face. Using this shell to render the encoded sur-
face results in voxels outside this shellSv being
used during normal calculation when central dif-
ferences are calculated. To include all of these
additional voxels we create the shellSn where
for eachv 2 Sv we addv andv26 to Sn. Sn now
contains all voxels which are used to display the
surface (including values used just in normal cal-
culation). We have called the voxelsSn thedis-
tance shellof the encoded object. The distance
shell adequately represents the object, and is a
valid method for voxelising objects where only
the surface needs to be encoded. As a shell vox-
elisation it benefits from the advantage of requir-
ing less memory to store.

Figure 3: Rendering of rook space filled distance
field at several different offsets.

4 Fast Calculation

4.1 Background

The shell distance field is not adequate enough
for situations where a space filled distance field
is required. For example the space filled distance
field can be used to create offset surfaces from
the original encoded surface. An example of the
Rook chess piece is shown in Figure 3. This has
many uses such as:
� Skeletonisation – distance information can

be used to extract the skeletal representation
of an object.

� Machine vision applications – thickening,
thinning, correlation, and convergence.

� General distance calculations – e.g. the cal-
culation of distance to objects or contours
and the production of Voronoi tessellations.

� Shape-based interpolation – Intermediate
slices in scanned data can be interpo-
lated from distance information. Interpo-
lation from the original data causes abrupt
changes at boundary locations.

� Distance field manipulation [12] – Distance
information is added to surface models to
allow their manipulation. Such manipu-
lations include: interpolation between two
surface models, offset surfaces, blending of
two surface, and surface blurring.

� Volume morphing – A morph between two
distance volumes can be easily created with
the use of simple linear interpolation, Fig-
ure 4 gives some images from such a morph.
Cohen-Or et al. [13] use distance fields
along with warp functions to create a morph
between two general topological objects.

� Accelerating ray tracing – various re-
searchers have used CDT (Section 4.2) dis-



Figure 4: Simple morph between a sphere and a
CT skull.

Figure 5: Hypertextured (a) CT skull and (b)
voxelised pawn chess piece.

tance information to accelerate ray tracing.
The general principal behind each method is
to use the distance information to skip over
large empty spaces.

� Hypertextures (Satherley and Jones [14])
– Non-geometrically definable volume
datasets, such as CT scans, can be con-
verted to distance fields, allowing the
application of Perlin and Hoffert’s hyper-
texture [15] effects, Figure 5.

All of the applications listed above require and
use a space filled voxelisation which we have al-
ready demonstrated as being costly to compute.
Indeed the creation of a space filled distance field
is so costly for most applications, that a faster
(very inaccurate) method known as adistance
transform(DT) is used.

4.2 Distance Transform

The first stage of the DT process is tosegment
the voxel field according to the surface via the
binary thresholding operation to encode the ob-
ject of interest (equation 1). A distance field,D

is then constructed using equation 2:

D(p) =

�
0 if f(p) = 1; 9 q 2 p8; f(q) = 0

1 otherwise

wherep 2 I
3; andp8 is the set of voxels

which are the 8 neighbours ofp
(2)

Next the local distance propagation (equa-
tion 3) is achieved with a number of passes of
adistance matrix, dmat. Each pass loops through
each voxel in a certain order and direction ac-
cording to the needs of the matrix.

D(i; j; k) = min

��
D(x+ i; y + j; z + k)+

dmat(i; j; k)
�
8 i; j; k 2 dmat

�
wherei; j; k 2 I

(3)

Chamfer distance transforms propagate local
distance by addition of known neighbourhood
values obtained from the distance matrix,dmat,
(an example of which is in Figure 6). Each value
in the matrix represents the local distance value.
This matrix is applied in two passes (and not re-
cursively propagating one distance at a time as
some authors have in previous work).
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Figure 6: Quasi-Euclidean5 � 5 � 5 chamfer
distance matrix.

The forward pass (using the matrix above and
to the left of the bold line, shown initalic font)
calculates the distances moving away from the
surface towards the bottom of the dataset, with
the backward pass (using the matrix below and to
the right of the bold line) calculating the remain-
ing distances. This method is computationally
inexpensive since each voxel is only considered
twice, and its calculation depends upon the addi-
tion of elements of the matrix to its neighbours.

This method of distance generation is very
innaccurate, and hence all of the applications
that rely on the method are using inaccurate
data. We required distance fields to produce



hypertextured objects, and we found that the
best distance transforms did not produce accu-
rate enough data for the hypertexture to oper-
ate convincingly. This led us to investigate vec-
tor propagation methods and gave arise to a new
vector propagation method.

4.3 Vector City Vector Distance
Transform

Vector methods store a vector to the closest sur-
face point at each voxel. These vectors are
propagated to neighbouring voxels in a pre-
scribed way similar to the propagation of dis-
tances via the distance matrix. After the re-
quired number of passes, a final step calcu-
lates the distance value for each voxel from
the vector stored at that voxel. Previous vec-
tor propogation methods operated on a binary
segmented data set (as in Equation 2), and so
are attempting to produce a distance field from
an object encoded as Figure 2(a). Our con-
tribution to the area of vector transfroms is to
use our distance shellSv of Section 3.2 (Fig-
ure 2(c)) as the starting point (although vectors
to the closest surface point, rather than the dis-
tance to that point are stored), and propogate
distances using a new transform – the Vec-
tor City Vector Distance Transform (VCVDT).
Details and analysis of the method and its
comparison to previous methods can be found
in our report [16] (available on http://www-
compsci.swan.ac.uk/�csmark/voxelisation/).

Our method for modelling objects is to first
calculate vectors for eachv 2 Sv (as defined in
Section 3.2) to the closest point on the surface.
For triangular mesh objects, the closest point on
the triangle is used. Computational time can be
improved by using an octree to organise the ob-
ject – parts of the octree outside the current clos-
est distance can be ignored (thus reducing the
number of triangles to be considered for each
voxel). A new voxel can use its neighbours clos-
est point as an initial starting point (so that large
amounts of the octree are ignored).

For CT data, 8 neighbouring voxels are con-
sidered to make a brick cell. A cell is transverse
if at least one voxel is inside the surface and at

least one voxel is outside. For eachv 2 Sv the
closest transverse cells are stored in a list (again
an octree and neighbour information is used to
speed computation). Next, each transverse cube
in the list is divided into tetrahedra, and then the
closest point is calculated as the closest point on
the triangular tiling of the tetrahedra [12]. This
avoids the ambiguous cases present in marching
cubes. The list of cells contains all cells that
could contain the closest point – i.e. the furthest
point in the closest cell is further away than the
closest point in the furthest cell.

We now have a shell of voxelsSv about the
surface for which vectors to the closest point on
the surface are known. All other voxels in the do-
main are initialised to a large value. We consider
this voxel grid to be ~V (p) 2 R

3 wherep 2 I
3.

The vectors are now propogated throughout the
volume so that equation 4 is true (D is the final
distance field).

D(x; y; z) = min

�����~V (x + i; y + j; z + k)+

dmat(i; j; k)
���� 8 i; j; k 2 dmat

�

wheredmat(i; j; k) 2 I
3 andi; j; k 2 I

(4)

This time 8 passes are made through the data
set according to Figure 7 anddmat is defined as
the vector values in Figure 7 (for further details
see our report [16]). As an example though, the
first forward pass F1 is applied to each voxel in
the direction of increasing x, y and z. The new
vector at the voxel is the minimum of itself, its
negative y neighbour with -1 added to the y com-
ponent of its vecotr, and similar for its negative x
and z neighbours. This small example may seem
to indicate no account is taken of whether we
are moving away or towards the surface. In fact
later passes (and the minimum operator) ensure
that account is taken. It may also make obvious
the fact that the method may not give the cor-
rect closest voxel. This is true – the method is an
approximation, but as we shall see, it is over 6
times more accurate than previous approximate
methods. The final distance is set to negative if
f(v) = 1, or positive iff(v) = 0.
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Figure 7: Eight pass vector-city vector distance
transform.

Distance Time Error range Avg error
method min-max per voxel

True 8 hrs 0.000-0.000 0.000000
VCVDT 6.31s -0.504–0.746 0.000787
EVDT 10.8s -0.856–3.367 0.004512
CDT 7.45s -0.564–2.156 2.155614

Table 2: Comparison of VCVDT with other
methods

5 Results

Figure 8 shows several offset surfaces from the
CThead rendered from the distance field pro-
duced from the distance shellSv using the above
VCVDT vector transform. A full animation can
be found at the WWW site mentioned above.
The CThead distance shell (i.e. accurately mea-
sured sub-voxel distances to the skull for all
v 2 Sv) takes 240 secs. Table 2 shows the ad-
ditional time required to propogate these vectors
(and calculating the final distances), using our
new VCVDT method, the current best method
EVDT, and the CDT method, and compares this
to the true calculation. It can be seen that for
just over 4 minutes it is possible to compute the
full distance field to a good accuracy, rather than
resorting to the 8 hour computation. Propogat-
ing the shell vectors for the chess piece to create
a complete distance field takes less than 2 sec-
onds, and in fact Figure 3 was rendered from
the propogated rook distance field. We found
that the field was accurate enough for our pur-
poses, and the improved accuracy over the CDT
method (currently used by most researchers re-
quiring distances), would have advantages for all
the applications mentioned earlier.

Figure 8: Rendering of CThead space filled dis-
tance field at different isovalues (offsets).

6 Conclusions

We have introduced distance fields as a mod-
elling paradigm and in particular introduced
shell distance fields in Section 3.2. Figure 2
demonstrated their superiority over sampling
methods and table 1 their comparable execution
time. Details for reproducing distance shells are
given in 3.2 and 4.3. A case for needing space-
filled distance fields was made in Section 4,
but computational expense was cited as a major
problem. Section 4.3 builds upon the knowledge
presented in 4.2 to demonstrate that vector meth-
ods produce fairly accurate distance fields in less
time. Our contribution to that area is a sub-voxel
accurate segmentation and a better vector trans-
form, which we present in this paper in relation
to modelling objects.

We have demonstrated that distance fields can
be used to model (voxelise) objects, but our over-
all aim was to demonstrate to the graphics com-
munity that fast,accurate space filled distance
fields can be calculated from distance shells and
thus become a realistic modelling paradigm with
many (already identified) application areas.
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