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This paper will examine the current chamfer and vector distance trans-

forms for encoding objects as distance �elds. A new vector distance trans-

form is introduced which uses the city-block chamfer distance transform as

a basis. Detailed error analysis using real CT data is presented demonstrat-

ing the improved accuracy the new approach gives over existing methods.

The production of a sub-voxel accurate distance �eld is also demonstrated

by employing an improved classi�cation. Distance �elds are shown for skull

and chess piece datasets.

Key Words: distance �eld; distance transform; chamfer distance transform; vector dis-

tance transform; Euclidean distance; sub-voxel accuracy; voxelisation

1. INTRODUCTION

Distance �elds are required by many applications such as hypertexture (Fig-

ure 1(a)), voxelisation, morphing (Figure 1(b)), facial reconstruction, measurement

and 
ight path calculation. Our work in this area arose from the need to compute

complete Euclidean distance �elds from polygonal meshes and CT data for use with

some of these applications.

The method for obtaining a true Euclidean distance �eld is to repetitively calcu-

late the distance (Eq.(1)) between a voxel and every voxel on the surface, taking

the minimum value as the result. This naive, brute force, method is extremely

computationally expensive, taking over 62 hours when applied to the skull of UNC

CThead { a 256�256�113 greyscale dataset, 183,194 features. (All timings in this

paper were taken on a Athlon 800.) This can be improved to two and a half hours

through the use of an octree and various neighbour information, but even this

signi�cant improvement does not render the method feasible.

DE =
p
�x2 +�y2 +�z2 (1)

The computational expense of the Euclidean distance calculation is due to its

global nature. Distance transforms (DT), also known as distance �eld calculations,

devised by Rosenfeld and Pfaltz [1], approximate Euclidean distance via local dis-
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FIG. 1. (a) Hypertextured CT skull and chess piece. (b) A sphere morphing into a skull.

tance propagation, thereby reducing the global operation to simple addition. This

reduces the execution time considerably, but at the cost of reduced accuracy.

Since their original proposal DTs have been the subject of numerous research

papers; see Danielsson [2], Borgefors [3, 4, 5], Ragnemalm [6, 7], and Mullikin [8].

The magnitude of this interest has resulted in numerous improvements to DTs,

including the introduction of vector distance transforms (VDT). This paper will

present a thorough review and analysis of vector distance transforms in large three-

dimensional dataset situations. In addition, the two main contributions of this

paper are; a further improvement to DTs, through the expansion of the basic city-

block chamfer distance transform into the vector domain; and the computation of

a distance �eld with true sub-voxel accuracy.

Section 2 introduces DTs with a brief description and comparison of the two

categories. In Section 3 we will introduce and analyse our new vector-city vector

distance transform (VCVDT), giving comparisons to distance �elds obtained from

Mullikin's [8] EVDT, a version of the EVDT with a full vector grid, and the true

Euclidean distance �eld. We conclude Section 4 with a further extension of DTs,

by invoking a voxelisation process to classify the feature voxels, thus removing the

need to perform a binary segmentation of the surface of interest prior to applying

the DT. This allows the production of a distance �eld with sub-voxel accuracy.

2. DISTANCE TRANSFORMS

Distance transforms can be split into two categories;

� chamfer distance transforms (CDT) and

� vector distance transforms (VDT).

Both categories work as a two stage process. Firstly, the feature voxels (or sur-

face of interest), S, are segmented from the dataset, f , via a binary thresholding
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operation, � (Eq.(2)).

S = f(x; y; z) : f(x; y; z) � �g where x; y; z 2 Z (2)

Eq.(2) returns an object surface of interest, in that, voxels which can be considered

to be inside the surface are marked as being features. The actual surface interface

can be segmented if the voxels which satisfy Eq.(2) are

also checked to be transverse [9]. A voxel is transverse if

at least one of its 26 bounding voxels is inside the surface

and at least one is outside. Transverse voxels can be iden-

ti�ed by comparing the bounding voxels to the threshold,

� , and setting a 26 bit 
ag, b26b25b24 : : : b3b2b1, as indi-

cated in Eq.(3). Therefore, a voxel is transverse if its 
ag

has a binary value between 000 : : :001 and 111 : : : 110.

Thus, non-transverse voxels are removed from S. Fig-

ure 2 gives an example of a transverse voxel, the central
FIG. 2: A transverse voxel.

voxel is transverse.

bi =

(
0 if voxel i � �

1 otherwise
(3)

2.1. Chamfer Distance Transforms

The second stage of a distance transform is the propagation of local distances

throughout the �eld, which (for chamfer distance transforms) is initialised as shown

in Eq.(4). If a signed �eld (voxels inside the object have negative distances) is

required, the datasets must also be classi�ed to indicate whether a voxel is internal,

external or on the surface { Eq.(5). The signed distance �eld is thus the unsigned

�eld multiplied by the corresponding classi�cation value { Eq.(6). Local distance

propagation is achieved with a number of passes of a distance matrix, dmat { Eq.(7).

D(p) =

(
0 if p 2 S, where p 2 Z3

1 otherwise
(4)

C(p) =

8>><
>>:
�1 if b(p) = 111 : : :111

0 if p 2 S

1 otherwise

(5)

D(p)signed = D(p)� C(p) (6)

D(x; y; z) = min
��
D(x+ i; y + j; z + k) + dmat(i; j; k)

�
8 i; j; k 2 dmat

�
where x; y; z; i; j; k 2 Z

(7)

Chamfer distance transforms propagate local distance by addition of known

neighbourhood values obtained from the distance matrix, dmat, the basis of which

is shown in Figure 3, where a, b and c represent the local distances.
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FIG. 3. Basis of the 3�3�3 distance matrix.

All CDTs employ two passes of the distance matrix. The forward pass (using the

matrix above and to the left of the bold line, shown in italic font) calculates the

distances moving away from the surface towards the bottom of the dataset, with the

backward pass (using the matrix below and to the right of the bold line) calculating

the remaining distances. In essence the forward past of the matrix is applied once

for every voxel according to Eq.(7). In the second pass, the backward part of the

matrix is applied similarly. Overall each voxel is considered twice, its calculation

depending purely upon the addition of the elements of the matrix to its neighbours,

and taking the minimum value. It is therefore computationally inexpensive.

There are numerous chamfer distance matrices, with varying error minimisa-

tion criteria, available in the literature. For example, Borgefors [4, 5] attempts to

minimise the maximum di�erence, whereas Vossepoel [10] also minimises the root-

mean-square di�erence. Marchand-Maillet and Sharaiha [11] measure the number

of topological inconsistencies [12, 13] in the (discrete) distance �elds. As this report

introduces a new vector distance transform, only a summary of the more common

matrices will be given here.

The simplest and least accurate of the CDTs is the city-block CDT [1] (Fig-

ure 4(a)), which uses only the orthogonal neighbours (a), which are unit distance

away. Accuracy can be improved by including more neighbours { the chess board

CDT (Figure 4(b)) and the quasi-Euclidean 3�3�3 CDT (Figure 4(c)) also use

neighbours that are diagonal along two axes (a and b). Whereas, the complete

3�3�3 CDT (Figure 4(d)) uses all 26 local neighbours (a, b and c) and propagates

realistic distances.
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FIG. 4. (a) City-block, (b) chess board, (c) quasi-Euclidean and (d) complete 3�3�3.

The accuracy can be further improved by increasing the matrix size, Figure 5

gives the distance matrix for the quasi-Euclidean 5�5�5 CDT. Note that some
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matrix positions are unused, this is due to these positions being equal to a double

step of a position closer to the centre of the matrix. This removes any unnecessary

calculations.
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FIG. 5. Quasi-Euclidean 5�5�5 chamfer distance matrix.

Table 1 compares the (signed) distance �elds, computed by the above CDTs for

the skull of the UNC CThead, to the true Euclidean distance �eld. Emphasis is

given to the average (absolute) error per voxel, although the error range of each

distance �eld is also given. The comparison entails subtracting the voxel values of

the true Euclidean distance �eld from those of the computed �elds. The minimum

error value is equal to the largest negative di�erence, with the maximum error

value being equal to the largest positive di�erence. The average error per voxel is

thus calculated by summing the absolute value of each subtraction and dividing the

result by the number of voxels in the dataset (7,405,568 for the UNC CThead).

TABLE 1

Comparison of the chamfer distance transforms to the true Euclidean

distance �eld.

Execution Distance range Error range Average error
Distance matrix

time (s) min max min max per voxel

Euclidean 2.5+ hours -4.243 109.595 0.000 0.000 0.000000

City-block 1.320 -5.000 184.000 -2.000 76.060 12.269071

Chess board 3.176 -4.000 92.000 -26.924 1.243 5.356728

Quasi-Euclidean 33 3.236 -4.414 130.108 -0.828 22.428 3.365570

Complete 33 4.842 -4.414 118.116 -0.415 11.769 2.196785

Quasi-Euclidean 53 20.438 -4.243 111.786 -0.363 5.149 0.612223

Note: The chess board CDT produces mainly negative errors as, unlike the other

implemented CDTs, its distance range is smaller than the distance range of the true

Euclidean distance �eld.

2.2. Vector Distance Transforms

Vector distance transforms (also known as Euclidean distance transforms (EDT))

di�er from chamfer distance transforms in that vector components are propagated.

Distances are calculated by evaluating the vector components once they have been

propagated. Vector propagation is possible if the basic stages of a distance trans-

form (Eq.(4) and Eq.(7)) are altered as shown in Eq.(8) and Eq.(9).

~V (p) =

(
(0; 0; 0) if p 2 S

(1;1;1) otherwise
(8)
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~V (x; y; z) = min

�����~V (x + i; y + j; z + k) + dmat(i; j; k)
���� 8i; j; k 2 dmat

�
where x; y; z; i; j; k 2 Z and dmat(i; j; k) = ( ~matx; ~maty; ~matz)

(9)

Vector distance transforms generally require more passes of the distance matrix.

During each pass the vector components are added to the necessary vector position,

a decision is made as to whether any of the new vectors are minimal and, if so, the

minimal vector is stored. The minimal vector is found by calculating the magnitude

of the vectors (Eq(10)) and comparing the results. In the situation where two or

more distances are minimal (a tie) no preference is made as to which vector is

stored.

j~V (x; y; z)j =

q
~Vx2 + ~Vy2 + ~Vz2 (10)

Vector distance transforms were �rst introduced (in two-dimensions) by Daniels-

son [2], through a description of the sequential Euclidean distance mapping (SED)

algorithms { the 4SED and 8SED, where the numeral denotes the number of neigh-

bours used in a 3�3 matrix . Implemented in a manner similar to chamfer distance

transforms, the SED algorithms provide a 180Æ propagation angle, computing a dis-

tance �eld in four passes (Figure 6) { later re�ned to three passes by Ragnemalm [7].
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FIG. 6. (a) 4SED and (b) 8SED distance matrices.

The superiority of VDTs, over CDTs, was immediately apparent { Danielsson

shows the 4SED (8SED) to have an absolute error of no more than 0.29 (0.09) pixel

units. Improvements were made to the SED algorithms by Ye [14] and Leymarie

and Levine [15], who extended the algorithms to include signed vectors (signed

sequential Euclidean distance mapping (SSED)) and removed the need to perform

multiplication and square root operations, respectively.

Mullikin [8] extended the 4SSED into three-dimensions, developing the eÆcient

vector distance transform (EVDT) { the most accurate 3D VDT available in the

literature, computing a distance �eld in six passes (Figure 7). Table 2 shows how

using the EVDT compares to computing the true Euclidean distance �eld for the

datasets listed in Table 3. (Execution times in Table 3 are for the brute force

computation)
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FIG. 7. The six passes of Mullikin's EVDT.

TABLE 2

Comparison of distance �elds computed using the EVDT to the

true Euclidean distance �eld.

Execution Distance range Error range Average error
Dataset

time (s) min max min max per voxel

CThead skull 7.540 -4.242 109.595 -0.518 2.533 0.004761

Sphere 0.284 -27.677 39.268 -1.659 1.984 0.010045

Pawn 0.116 -7.000 37.670 -0.394 1.013 0.009697

Queen 0.116 -6.633 39.674 -0.381 0.928 0.008117

Rook 0.116 -9.000 34.496 -0.740 0.945 0.033425

Pawn and rook 0.236 -9.000 37.670 -0.740 1.013 0.044117

TABLE 3

Datasets used to test the distance transforms.

Number of Distance range Execution
Dataset Resolution

feature voxels min max time (s)

CThead skull 256� 256� 113 183194 -4.242 109.595 2.5+ hours

Sphere 80� 80� 80 15425 -27.441 39.268 1212.410

Pawn 60� 60� 60 3340 -7.000 37.670 98.650

Queen 60� 60� 60 2357 -6.633 39.674 66.360

Rook 60� 60� 60 4050 -9.000 34.438 127.480

Pawn and rook 120� 60� 60 7390 -9.000 37.670 446.440

3. VECTOR-CITY VECTOR DISTANCE TRANSFORM

It has already been stated in Section 2.1, that the city-block CDT is the most

elementary distance transform. This fact has led to the majority of VDTs being

based, in some way, on the city-block CDT. In most cases the similarities stop at the

neighbourhood used by the distance matrix (for example Danielsson's 4SED [2]),

whereas others can include the two city-block passes in their own (for example

passes F1 and B1 of Mullikin's EVDT (Figure 7)). Our new vector-city vector

distance transform (VCVDT) goes one step further than this, in that the extra

passes are those that would be used by the city-block CDT if it were extended to
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employ the same number of passes. (Increasing the number of passes made by a

CDT has no e�ect on the �nal distance �eld.)

To reduce memory requirements the EVDT only maintains vectors for two slices

of the dataset. That is, only the vector components for the current and previous

slices are stored, with new slices being created, and old ones removed, as the scan

progresses. For reasons which will be explained in Section 3.1, the VCVDT stores

a complete vector copy of the distance �eld. Also the minimal distance is stored

along with the minimum vector after each pass. This strategy allows Leymarie

and Levine's [15] optimisations to be used and removes the need to recalculate the

current minimum distance for the central voxel, saving three distance calculations

per voxel. To further increase eÆciency the matrix positions that only need to be

checked once, that is, the vertical positions, are not included in subsequent distance

calculations. Figure 8 illustrates the four passes employed by the VCVDT.
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FIG. 8. Four pass vector-city vector distance transform.

3.1. The E�ects of Using Di�erent Vector Storage Methods

The previous section brie
y compared the implementation of the vector-city VDT

to the most accurate vector distance transform available in the literature (Mullikin's

eÆcient VDT [8]), showing the major di�erences to be:

� Di�erent distance matrices, and

� Di�erent methods of vector storage.

The di�erence between the two distance matrices is obvious { the EVDT calcu-

lates the minimum distance six times per voxel, whereas the VCVDT only calculates

the minimum distance four times per voxel.

The remainder of this section will compare the two types of vector storage. To

ensure a balanced comparison, a version of the EVDT which makes use of a complete

vector representation of the distance �eld has also been implemented. The distance

�eld generated by each implementation is displayed (at an o�set of 10 units) in

Figure 9(b){(d), with the di�erence between the computed distance �eld and the

true Euclidean distance �eld (at this o�set) shown in Figure 9(e){(g). The di�erence

images have been darkened for improved visibility.

The inclusion of the alternative implementation has brought to light a 
aw, which

only occurs when a distance transform is implemented using a limited number of

vector slices. Distance �elds generated in this manner have a large number of errors

compared to those obtained when a full vector grid is used. The errors are caused
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FIG. 9. O�set surfaces for (a) true Euclidean, (b) EVDT, (c) EVDT with complete vector

grid and (d) VCVDT distance �elds. Also di�erence between (e) a and b (f) a and c (g) a and d

(during the backward passes) as a result of the wrong feature voxel being selected

as closest. This is due to important vector information (from the forward passes)

being lost. Indeed, if the forward and backward passes are computed separately,

the two implementations produce identical distance �elds.

The average time taken, by each approach, to compute a distance �eld for the

skull of the UNC CThead, is given (along with comparative information) in Table 4.

Examination of this table shows that storing only two slices of vector information

increases the computation time. This increase in computational time is caused

by the extra management needed to ensure that the vector slices are organised

correctly.

TABLE 4

Average execution times and a comparison of the EVDT, EVDT with

full vector grid and the VCVDT to the true Euclidean distance.

Execution Distance range Error range Average error
Distance matrix

time (s) min max min max per voxel

EVDT 7.540 -4.242 109.595 -0.518 2.533 0.004761

EVDT full grid 6.348 -4.242 109.595 -0.504 1.053 0.000786

VCVDT 3.420 -4.242 109.595 -0.334 0.446 0.000644

Mullikin originally proposed the two vector slice approach to save on memory

requirements. Advances in technology have removed the need to limit resources

in this way, thus allowing all vector distance transforms to be implemented with

a complete vector grid. This and the fact that a full vector grid generates dis-

tance volumes, that are more accurate, in less time, has led to it being used by the

VCVDT. Table 5 presents the results of the application of the VCVDT and EVDT,

with full vector grid, distance transforms on the datasets listed in Table 3, clearly

the VCVDT out performs the EVDT with full vector grid in all cases. Further-
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more, Tables 2 and 5 also show that the performance of distance transforms is only

dependent on the size of the dataset.

TABLE 5

Results of applying the EVDT with full vector grid and the VCVDT

to the datasets of Table 3.

Execution time (s) Average error per voxel
Dataset

EVDT grid VCVDT EVDT grid VCVDT

CThead skull 6.348 3.420 0.000786 0.000644

Sphere 0.424 0.204 0.005282 0.002734

Pawn 0.184 0.094 0.001683 0.001546

Queen 0.184 0.094 0.001415 0.001380

Rook 0.184 0.094 0.002552 0.002307

Pawn and rook 0.360 0.174 0.002118 0.001930

The accuracy of the VCVDT can be improved by increasing the number of passes

made by the distance matrix from four to eight, as shown in Figure 10, producing a

VDT resembling Ragnemalm's [7] corner EDT. Ragnemalm's corner EDT is brie
y

mentioned in [7] and very little information regarding computation, accuracy and

performance is given. The results of applying the eight pass VCVDT to the datasets

listed in Table 3 are given in Table 6, which again highlights the improvement the

VCVDT technique provides in terms of computation time and accuracy.
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FIG. 10. Eight pass vector-city vector distance transform.

3.2. Error Analysis

In the reports on their respective algorithms Danielsson [2] and Mullikin [8]

detailed one of the causes of errors in a distance �eld. The reported errors occur

when the feature voxels are in a speci�c arrangement, preventing a propagation

front from reaching a point within its own Voronoi tile, as demonstrated (in 2D) in

Figure 11(a), where the dashed line represents the desired propagation and the solid

lines represent the achievable propagation. That is, the feature voxels are arranged

such that the vectors satisfy the inequalities of Equation 11 [8], see Figure 11(b)

for an example.
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TABLE 6

Results of applying the 8 pass VCVDT to the datasets of Table 3.

Execution Distance range Error range Average error
Dataset

time (s) min max min max per voxel

CThead skull 5.470 -4.243 109.595 -0.334 0.334 0.000223

Sphere 0.302 -27.677 39.268 -0.268 0.268 0.000559

Pawn 0.134 -7.000 37.670 -0.310 0.278 0.000233

Queen 0.134 -6.633 39.674 -0.268 0.268 0.000179

Rook 0.134 -9.000 34.438 -0.334 0.268 0.000302

Pawn and rook 0.260 -9.000 37.670 -0.334 0.278 0.000268
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FIG. 11. Examples of (error causing) feature voxel arrangements, (a) 2D and (b) 3D.

j~v1j < j~v2j

j~v5j < j~v3j

j~v6j < j~v4j

j~v7j < j~v5 + (1; 0; 0)j

j~v7j < j~v1 + (0; 1; 0)j

j~v7j < j~v6 + (0; 0; 1)j

where ~v7 = ~v2 + (0; 1; 0) = ~v3 + (1; 0; 0) = ~v4 + (0; 0; 1)

(11)

Arrangements of this kind cause local errors { only the voxel at the focal point

of the arrangement (O in Figure 11(b)) and possibly a few of its neighbours are

given incorrect distances. Cuisenaire and Macq [16] observe that these errors only

occur at the corners of Voronoi tiles, and show how they may be detected and

corrected if each voxel also indicates which feature point is its nearest object pixel

(NOP). Whilst analysing Mullikin's EVDT, a voxel arrangement was discovered
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which produces errors that are far more widespread. A diagonal line of three or

more feature voxels on the z-plane, lying in the same direction as the matrix passes

are applied, causes the wake like error propagation illustrated in Figure 12.

z

Feature voxels

Error wake

y

x

FIG. 12. Error wake caused by diagonal feature voxels.

The error wake only occurs when a limited number of vector slices are used. This

can be easily proven by performing the following simple experiment. Apply each

distance transform to a (small) binary dataset, containing only three feature voxels

arranged as described above. Next calculate the true Euclidean distance �eld for

the dataset and compare the results. The comparison shows that only the distance

�eld generated by the EVDT is erroneous.

Figure 13 illustrates, for the true Euclidean distance �eld (on the slice containing

the feature voxels), which feature voxel (shaded voxels) is closest to each of the

background voxels, where a voxel with two patterns is equidistant from both of the

corresponding feature voxels. Figures 14 and 15 show how the relationship between

the feature and background voxels develops with each pass

of the standard EVDT and VCVDT respectively, where an

empty voxel indicates that it has not been reached by the

propagation front. Notice that pass B1 of the standard

EVDT does not alter the relationship between the feature

and background voxels, whereas pass B1 of the VCVDT

does. In Figures 7 and 8 it can be seen that these two

passes are identical. The only explanation for the existence

of the error wake is the loss of vector information when only
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FIG. 13: Background to

feature voxel relationship.

using a limited number of vector slices.
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FIG. 14. Feature to background voxel relationship after each pass of the standard EVDT.
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FIG. 15. Feature to background voxel relationship after each pass of the VCVDT.

Various methods for error reduction and correction have been detailed in the

literature. For example, Ragnemalm [7] and Borgefors [5] increase the number of

local neighbours, Cuisenaire and Macq [17] use larger matrices in the vicinity of

possible errors and Mullikin [8] keeps track of tie and near tie vectors. All of these

methods may be employed by the new VCVDT to even further improve accuracy.

4. SUB-VOXEL ACCURACY

Applications using distance transforms employ a segmentation algorithm in order

to determine the zero distance surface from which the distance �eld is computed.

This approach results in the segmented surface being an approximation to the cor-

rect surface, and therefore the resulting computed distance �eld being an approx-

imation to the correct distance �eld. Figure 16 shows a rendering of the original

UNC CThead before segmentation, and the resulting rendering after segmentation.

This demonstration should highlight the fact that the binary segmentation process

is unsatisfactory, and leads to large inaccuracies during subsequent computation

(e.g. distance transforms).

a b c

FIG. 16. UNC CThead rendered from: (a) original data set (b) distance �eld based upon

binary segmented data set (c) distance �eld based upon new sub-voxel approach.

This section explores the method by which we produce sub-voxel accurate dis-

tance �elds for both voxel (CT, MRI etc.) and polygonal mesh data.

Our new approach is to compute a shell of vectors about the surface of interest,

where each vector indicates the distance of the closest point on the surface from

the current position. For positions not in the shell we again assign a large value.

Vectors are propagated to these positions using the 8VCVDT or some other DTs.
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4.1. Volume Data Closest Point Calculation

For volume data such as CT or MRI data we must calculate the vector from each

required voxel, to the closest point on the surface, S, of the object encoded within

the data (Eq.(2)).

At each voxel v = (x; y; z) we calculate the vector V as the vector which points

to the closest point s 2 S from v.

To compute V we must calculate the minimum distance from v to the sub-voxel

surface contained in every cell bounded by 8 voxels. This can be done by calculating

a function to represent the local surface passing through a cell, but in practice this

produces a highly complex solution (see Webber [18]). The approach employed here,

is to calculate the triangulation of the cell and to measure the distance of the voxel

to each triangle, and subtract the point of minimum distance from v to give the

vector, V . The triangulation is created by dividing the cell up into tetrahedra, and

producing either 1 or 2 triangles separating voxels inside the surface from voxels

outside the surface. This method is used by Payne and Toga [19], and has the

advantage that it does not su�er from the ambiguities that Marching Cubes [20]

does. Each triangle has vertices determined by interpolation from the known voxel

values, and therefore approximates local �eld changes with whichever interpolation

method is decided upon.

This computation is quite complex, and can be accelerated by creating an oc-

tree [21] of the voxel values. Each node in the octree contains the maximum and

minimum of the voxel values contained within that node. We also keep track of

the current minimum distance discovered so far, and then each node, having a

transverse voxel, which is within that distance is considered. The children of that

node which are within the current minimum distance are considered recursively.

Once we reach a leaf node, the triangulation mentioned above is carried out, and

the minimum distance is updated before continuing the traversal of the octree. By

using a neighbouring voxel's closet point as a candidate for a new voxel, we can

start with a good approximation to the minimum distance, and therefore reject

large portions of the octree. We can also reject portions of the octree that do not

contain the surface threshold � .

The above method of �nding the closet point s 2 S from voxel v was used for all

voxels when computing the brute force complete Euclidean distance �eld, and as

mentioned took 2 1
2
hours.

4.2. Computing the required shell

To fully de�ne the surface, the vectors need to be calculated just inside, and just

outside the surface (otherwise the vector propagation will not produce an accurate

representation of the surface). Therefore, the required shell, R is the set of voxels

that are either just inside, on or just outside the surface. These are stored along with

a 
ag indicating whether the point is inside or outside, which is used to determine

the sign in the distance �eld.

For each voxel v, where f(v) � � , which has a neighbour n where f(n) < �

we add v and its 26-neighbours to R. This has the desired e�ect of creating a

shell of voxels around the surface as stated in the previous paragraph. For each

v 2 R we calculate the vector V as in Section 4.1, and store this in our vector

grid. For all other voxels we store a large vector. The 8VCVDT is then used to
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propagate the vectors, from which the distance �eld is then computed. This vastly

reduces the number of voxels to be computed using the method of Section 4.1, the

remaining being computed in the 8VCVDT passes. This reduces the overall run-

time to produce a distance �eld from 2 1
2
hours to less than 5 minutes. Figure 16(c)

and 17 show renderings from this distance �eld.

FIG. 17. Iso-surfaces from the CThead distance �eld

Table 7 shows the computational times for calculating the complete distance �eld

from the shell distance �eld using various chamfer and vector methods.

TABLE 7

Comparison of the binary segmented and sub-voxel classi�ed distance

�elds to the sub-voxel accurate Euclidean distance �eld.

Execution Error range Average error
Distance matrix

time (s) min max per voxel

True Euclidean 2.5+ hours 0.000 0.000 0.000000

City-block (binary) 1.320 -2.000 76.230 12.519548

City-block (shell) 1.290 + 124 -2.377 73.187 10.775360

EVDT (binary) 7.540 -1.732 3.081 0.261987

EVDT (shell) 7.200 + 124 -1.873 1.393 0.015674

4VCVDT (binary) 3.420 -1.732 1.739 0.257894

4VCVDT (shell) 4.534 + 124 -1.873 1.393 0.013266

8VCVDT (binary) 5.470 -1.732 1.729 0.257474

8VCVDT (shell) 8.648 + 124 -1.986 1.393 0.012215

4.3. General Polygonal Meshes

The sub-voxel accurate approach of the previous sections can also be applied to

polygonal mesh objects as a process known as voxelisation [22]. Once the resolution

of the resulting data set has been decided, the grid is sampled at regular points to

determine if the voxel is inside the surface. The shell of voxels for which vectors

must be computed explicitly is calculated using the method of section 4.2. Then

for each voxel v 2 R we calculate the closest point on the triangular mesh from

v. We use the vector to that point to create our shell vector �eld (which are then

propagated by applying 8VCVDT). Once again an octree could be used to accelerate

the process of �nding the closest triangle, although we use a slab based approach

which matches the number of slices in our voxel grid. A voxelised chess piece is

shown in Figure 18, along with several distance �eld iso-surfaces. The full distance
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�eld takes 1050 seconds to compute, whereas calculating the shell of vectors and

propagating them to create the �elds takes a combined time of 12 seconds.

FIG. 18. Iso-surfaces from the chess piece distance �eld

5. CONCLUSION

In this paper we have demonstrated several improvements to DTs. Firstly it has

been shown that storing a complete vector representation of a distance �eld rather

than a limited number of vector slices, both reduces the average execution time

and increases the accuracy of vector distance transforms. This can be seen in the

comparison between Mullikin's EVDT [8] and the previously unpublished EVDT

with full vector grid { two VDTs that only di�er in the number of vector slices

stored (two slices and a complete vector grid).

Next a new, faster and more accurate VDT has been introduced, the vector-city

vector distance transform (VCVDT) { a four pass VDT modelled on the city-block

CDT. After a detailed error analysis, four extra passes were added to the VCVDT,

again improving accuracy.

Error analysis was carried out on real datasets, allowing a thorough test for each

DT on a large number of possible error situations. Testing accuracy in this way

revealed a voxel arrangement which causes errors far worse than any previously

published. A diagonal line of three or more voxels in the z-plane causes a wake like

error propagation. The use of a complete vector grid removes this error wake.

Finally we have shown how voxelisation may be combined with distance trans-

forms in order to produce distance �elds, from �eld data and triangular mesh

objects, with sub-voxel accuracy, which achieves a far more accurate distance �eld

than previous methods that have employed binary segmentation.
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