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ABSTRACT

This paper will examine hypertexture rendering techniques and will demonstrate how volume

datasets may be adapted in order for hypertexture to be applied. Details are given of a process for

the conversion of complex objects, such as CT scans, into accurate distance �elds. Hypertexture

is applied to these objects and example renderings include the UNC CThead, a chess piece, a

dodecahedron and a tank. Additional information is given about soft objects, density modulation

functions, ray marching and controlling hypertexture application.

CR Categories: I.3.7[Computer Graphics]:Three-Dimensional Graphics and Realism | Color,
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1 INTRODUCTION

Traditional texture mapping techniques, such as

Peachey [Peach85] and Perlin's [Perli85] solid tex-

tures, are limited to the reproduction of textures

that have simple surface de�nitions. Many natu-

ral textures, such as fur, have surface de�nitions

that are at best complex. Others, such as �re and

smoke, have no well de�ned surface at all and are

therefore unreproducible with such methods.

Hypertexture [Perli89], developed by Perlin and

Ho�ert, allows the reproduction of such complex

textures through the manipulation of surface den-

sities. This method is restricted to objects which

can be de�ned using a modi�ed form of implicit

function (f(x; y; z) = D(x; y; z)), such as spheres

and tori. Dischler and Ghazanfarpour [Disch95]

produced hypertexture like e�ects on more gen-

eral objects, with the use of geometrical based tex-

tures. A method which involves de�ning a skele-

ton for an object, from which densities are inter-

polated. Again this method is limited as it is only

applicable to closed objects.

This paper aims to introduce a new method for

the application of hypertexture to complex (open

or closed) volume objects, such as CT scans and

voxelised polygon meshes, with the use of dis-

tance �elds. Distance �elds are well suited to hy-

pertexture application, as each point in the �eld

gives the distance to its closest surface point, from

which density is calculated easily.

Section 2 will brie
y introduce the process of hy-

pertexture application, summarising the concepts

of soft objects (Section 2.1) and density modula-

tion functions (Section 2.2). In Section 2.3 ray

marching is introduced and examples of hyper-

texture e�ects are given in Section 2.4. Sec-

tion 3 will develop the new idea of using dis-

tance �elds as a basis for applying hypertexture

to complex objects. Section 3.1 will demonstrate

how scanned data, such as CT datasets, and pre-

viously voxelised (shell) datasets ([Jones96]) can

be converted into distance �elds using a distance

transform. Section 3.2 will introduce a new faster

and more accurate vector distance transform, the

vector-city vector distance transform (VCVDT).

Example images will be given in Section 3.3. Fi-

nally, Section 4 introduces means of controlling

the application of hypertexture.



2 HYPERTEXTURE

It has already been stated that Perlin and Ho�ert

developed hypertexture [Perli89] as a method for

replicating natural phenomena, such as �re and

fur, on implicit surfaces. This section will brie
y

summaries the main aspects of hypertexture, giv-

ing examples of the achievable e�ects.

2.1 Soft Objects

Before describing how to produce hypertexture

e�ects, it is necessary to introduce soft objects.

A soft object is an object where the thin surface

boundary has been extended into a larger soft re-

gion, across which density varies from 1 (inside

the object) to 0 (outside the object).

The soft region (and therefore the object) is mod-

elled using an object density function, D(p). An

example of which, describing a sphere, is given

in Eq. 1 and is illustrated in Fig. 1. Note that

the outer surface has been cut in order to give a

better view of the two surfaces.

D(p) =

8><
>:
1 if jpj2 � ri

2

0 if jpj2 � ro
2

ro
2�jpj2

ro2�ri2
otherwise

where ri = inner radius,

ro = outer radius

and p 2 R3

(1)

Figure 1: Illustration of Eq. 1.

Hypertexture e�ects can now be achieved by the

repeated application of Density Modulation Func-

tions (DMF, Section 2.2) to the soft region of

D(p), Eq. 2.

H : R � R3 ! r; g; b; �

H(D(p); p) = DMFn(: : : (DMF0(D(p))))
(2)

2.2 Density Modulation Functions

The density modulation functions can be sepa-

rated into the three categories below.

� Position dependent { functions that are de-

pendent on p.

� Position independent { scalar argumented

functions.

� Geometry dependent { functions that are

dependent on local geometry, e.g. surface

normals.

Complex density modulation functions are con-

structed, as shown in Eq. 2, from the following

basis functions, along with control functions such

as cosine (cf Perlin's solid textures [Perli85]).

� Noise { used to approximate band-limited

white noise, producing a pseudo-random

value in the range (�1; 1). Several imple-

mentations are given by Lewis [Lewis89].

� Turbulence { simulates the appearance of

Brownian motion (turbulent 
ow) by the

summation of noise at increasing frequen-

cies (Eq. 3), introducing a self-similar 1
f

pattern.

turb(p) =
X
i

abs

�
noise(2ip)

2i

�
(3)

� Bias { de�ned by the power curve of Eq. 4,

bias is used to shape the density across the

soft region.

biasb(D(p)) = D(p)

ln(b)

ln( 12 ) (4)

� Gain { de�ned as a combination of two bias

curves (Eq. 5), gain is used to alter the

rate at which the density changes in the

midrange of the soft region.

gaing(D(p)) =

8>>>>><
>>>>>:

bias1�g(2D(p))

2

if D(p) < 1
2

1�
bias1�g(2�2D(p))

2

otherwise

(5)



2.3 Implementation

The absence of a well de�ned surface for the natu-

ral phenomena modelled by hypertexture, means

that hypertextured objects will also have no well

de�ned surface. This necessitates the use of a ray

marcher, a simpli�ed form of volume rendering

([Levoy88]), when creating hypertexture e�ects.

∆µ
µ1

Soft region

Object

Ray

Bounding box

µ0

Figure 2: The ray marching process.

A simpli�ed model of a ray marcher is given in

Fig. 2. A ray, r, is �red from every pixel into

the object space. If a ray intersects the object's

bounding box, the entry (�0) and exit (�1) points

for this ray are calculated. D(p) is now evaluated

at �xed points along the ray according to Eq. 6.

r(k) = �0 + k�� where k 2 N (6)

If p lies within the soft region, the necessary DMF

combination is applied, and a colour, C� (� =

r; g; b), and opacity, �, for this point of the ray

are obtained. This process is repeated along the

ray, accumulating colour and opacity, until one of

following three criterion is met.

� Ray termination { r(k) = �0 + k�� � �1

� Inner surface reached { D(p) = 1

� Opaque surface { � � 1

2.4 Examples of Hypertexture

� Unconditional noise { noise is added to each

component of p { Fig. 3(a).

� Directed noise { noise is added to only one

of the components of p, creating a melting

e�ect { Fig. 3(b).

� Fractal noise { noise of increasing frequency

and decreasing amplitude is summed and

added to p { Fig. 3(c).

� Fire { turbulence is added to each compo-

nent of p { Fig. 3(d).

� Fur { fur �laments are grown from random

positions { Fig. 3(e).

� Melting �re { a �re hypertexture has been

applied to a previously melted sphere {

Fig. 3(f).

(a) Noise (b) Melting

(c) Fractal (d) Fire

(e) Curled Fur (f) Melting �re

Figure 3: Examples of hypertexture e�ects.

3 HYPERTEXTURED VOLUME DATA

The fact hypertexture is implemented with a ray

marcher (theoretically) allows it to operate on

volume data. Problems arise when it is not pos-

sible to derive an implicit function for an ob-

ject which is traditionally rendered using volume

based methods, for example CT scan datasets.

Examination of the datasets used for the im-

ages of Fig. 3 and other mathematically generated

datasets, shows that the voxels give values related



to the distance to some feature point / surface.

Therefore, complex objects could be rendered

with hypertexture if the dataset could be con-

verted into a distance volume, D, where D(p) is

the distance from p to the closest point on the

object's surface. For volume data, this can be

achieved by measuring the distance between ev-

ery background voxel and every surface voxel and

then taking the minimum. This is extremely com-

putationally expensive { taking over 62 hours for

the UNC CThead. This can be improved to 8

hours by employing an octree and using a neigh-

bour's closest voxel as a candidate to eliminate

parts of the tree.

The run-time of the distance conversion process

can be considerably improved, at the cost of re-

duced accuracy, with the use of a distance trans-

form (DT) [Rosen66, Danie80, Borge86, Mulli92,

Borge96] { a process used to approximate Eu-

clidean distance calculations via local distance

propagation. In Section 3.1 the distance trans-

forms process will be introduced, followed by a de-

scription of the vector-city vector distance trans-

form { a new more accurate distance transform,

in Section 3.2. Example images will also be given.

3.1 Distance Transforms

Distance transforms can be separated into two

categories, chamfer distance transforms (CDT)

and vector distance transforms (VDT). The dif-

ference being CDTs propagate distance by ad-

dition of known local neighbourhood distances,

whereas vectorial information, from which dis-

tances are calculated, is propagated by VDTs.

Both categories are implemented as a two stage

process { surface extraction, followed by distance

propagation.

The �rst stage of a DT is to segment the dataset,

f , on a regular grid, via a thresholding operation,

� , to extract the surface of interest, S.

S = f(x; y; z) : f(x; y; z) � �g

where x; y; z 2 Z
(7)

3.1.1 Chamfer Distance Transforms

The preliminary distance �eld, for a chamfer dis-

tance transform, is constructed using Eq. 8.

D(p) =

(
0 if p 2 S and9 q 2 p26; q =2 S

1 otherwise

where p 2 Z3 and p26 is the set of voxels

which are the 26 neighbours of p

(8)

CDTs propagate distances with the use of two

passes of the distance matrix, dM , applying Eq. 9

to each voxel in turn, as demonstrated in the

pseudo-code below.

D(p) = min
�
D(x+i;y+j;z+k)+dM(i;j;k)

�
8 i; j; k 2 dM , where p 2 Z3 and i; j; k 2 Z

(9)

/* Forward Pass */

FOR(z = 0; z < fz; z++)

FOR(y = 0; y < fy; y++)

FOR(x = 0; x < fx; x++)

D(x,y,z) = Eq.9

/* Backward Pass */

FOR(z = fz-1; z � 0; z--)

FOR(y = fy-1; y � 0; y--)

FOR(x = fx-1; x � 0; x--)

D(x,y,z) = Eq.9

Two examples of a chamfer distance matrix are

given in Fig. 4 (see [Borge86] for more examples).

Note that each matrix element gives the distance

to the central element.
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Figure 4: Chamfer distance matrices.

Overall each voxel is considered twice, with its

distance calculation depending purely upon addi-

tion of the matrix elements to its neighbours and

taking the minimum.

3.1.2 Vector Distance Transforms

VDTs generally require more passes of the dis-

tance matrix. During each pass the vector com-

ponents are added to the necessary vector posi-

tion, the distance calculated, a decision made as

to whether any of the new distances are minimal,

and �nally the minimal vector is stored.

To allow vector propagation Eqs. 8 and 9 are

modi�ed as shown in Eqs. 10 and 11 respectively.



~V (p) =

8><
>:
(0; 0; 0)

if p 2 S and

9 q 2 p26; q =2 S

(1;1;1) otherwise

(10)

D(p)=min
��~V (x+i;y+j;z+k)+dM(i;j;k)

��
8i; j; k 2 dM , where dM = ( ~Mx; ~My; ~Mz)

(11)

Fig. 5 shows the matrix passes employed by Mul-

likin's eÆcient VDT (EVDT) [Mulli92] { the best

VDT represented in the literature.
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Figure 5: Mullikin's EVDT matrix passes

Overall each voxel attempts to update its distance

once during each pass, with the number of calcu-

lations and comparison made each time depen-

dent on the matrix used. For example the EVDT

passes over the dataset six times, making a total

of sixteen distance calculations and eleven com-

parison per voxel.

Table 1 summarises the �ndings of a comparison

between the true Euclidean distance �eld, for the

skull of the UNC CThead, and those generated

using the city-block, complete CDT and EVDT

distance matrices. From the table it can be seen

that the EVDT is by far the superior of the imple-

mented DTs, having an almost negligible average

error per voxel.

3.2 The Vector-city VDT

The previous section concluded that vector dis-

tance transforms are far more accurate than

chamfer distance transforms. In this section a

new, more accurate, vector distance transform,

based on the city-block CDT, will be introduced.

The city-block CDT is the most elementary dis-

tance transform. A fact which has led to it being

the basis of the majority of VDTs. For example

Danielsson's 4SED [Danie80] uses the same local

neighbourhood and Mullikin's EVDT [Mulli92]

uses the vector equivalent of the two city-block

passes in its own. The new vector-city vector dis-

tance transform (VCVDT) extends this heuristic

to include all four matrix passes. That is, the

extra passes could also be implemented as part

of the city-block CDT. Fig. 6 illustrates the ma-

trix used during each pass. The dashed positions

in Fig. 6 are omitted during the matrix passes

as they represent redundant calculations, that is,

they perform the same calculation as a previous

position.
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Figure 6: The VCVDT matrix passes

The vector-city vector distance transform is im-

plemented in a manner similar to that of the

EVDT. During each pass (F1, F2, B1 and B2) the

corresponding matrix segment is applied in the

direction indicated by Fig. 6. At each voxel, its

neighbours' vectors are altered according to the

overlying matrix element and the minimal vector

stored. If the situation arises where two or more

of the distances are minimal, a tie, no preference

is made as to which of the corresponding vectors

is stored. This is also the case in the EVDT.

Unlike the EVDT, which only stores two vector

slices, the VCVDT stores a complete vector copy

of the distance volume. Storing only two vector

slices was found to be the inferior of the two ap-

proaches, as vector information is lost as a pass

progresses through the dataset.

Furthermore, by storing (after each pass) the

minimal distance along with the minimum vec-

tor, the VCVDT is able to employ Leymarie and

Levin's [Leyma92] optimisations. Thus remov-

ing the need to recalculate the distance for the

central voxel, saving three distance calculations

per voxel. Therefore, the VCVDT makes only

eleven distance calculations and ten comparisons

per voxel.

The accuracy of the VCVDT can be improved

by increasing the number of passes made by the

distance matrix from four to eight, as shown in



Distance Execution Error range Incorrect Average error

matrix time (s) min ) max voxels (%) per voxel

True Euclidean �28800.000 0.000 ) 0.000 0.000 0.000000

City-block 1.320 -2.000 ) 76.060 91.579 12.269071

Complete 3�3�3 4.842 -0.415 ) 11.769 88.774 2.196785

EVDT 7.540 -0.518 ) 2.533 3.449 0.004761

Table 1: Results of comparing the generated distance �elds to the ture Euclidean distance �eld.

Fig. 7. As before the extra passes could be imple-

mented as part of the city-block CDT, adding an

extra eight distance calculations and comparisons

per voxel. Thus, the eight pass VCVDT makes a

total of nineteen distance calculations and eigh-

teen comparisons per voxel.
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Figure 7: The 8VCVDT matrix passes

Table 2 shows the results of the comparison be-

tween the distance �elds obtained from the four

and eight pass VCVDT and the true Euclidean

distance �eld. It can be seen from Tables 1 and 2

that the VCVDTs out perform the EVDT in both

speed of execution and accuracy.

3.3 Hypertextured Distance Fields

Hypertexture can be easily added to a distance

�eld by making a slight modi�cation to the object

density function (Eq 1), as shown in Eq. 12.

D(p) =

8><
>:
1 if kpk � ri

0 if kpk � ro
ro�kpk
ro�ri

otherwise

where ri = inner radius,

ro = outer radius

kpk = dataset value at p

(12)

That is, the value held at voxel p is used instead of

the magnitude of p. Furthermore, as the dataset

holds distance values, it is no longer necessary to

square the inner and outer radii.

Fig. 8 demonstrates the application of hypertex-

ture to distance �elds of triangular mesh objects

and the UNC CThead.

Figure 8: Hypertexture applied to the dis-

tance �elds for a chess piece, a dodecahe-

dron and the UNC CThead dataset.

4 CONTROLLING HYPERTEXTURE

There is little material available in the literature

on ways to control the application of hypertexture



Distance Execution Error range Incorrect Average error

matrix time (s) min ) max voxels (%) per voxel

VCVDT 3.420 -0.334 ) 0.446 1.300 0.000644

8VCVDT 5.470 -0.334 ) 0.334 0.343 0.000223

Table 2: Results of the comparing the VCVDT distance �elds to the true Euclidean distance �eld.

to an object. This section will demonstrate three

application control methods which are applicable

to hypertexture {

� Clipping { hypertexture is only applied to

selected parts of the object.

� Blending { two or more textures can be

blended together.

� Animation { animations can be created by

altering control parameters.

4.1 Clipped Hypertexture

More often than not it is only necessary to tex-

ture a certain part of an object. This selective

texture addition can be achieved if it is possible

to identify such sections.

One approach is to de�ne a clipping surface to

separate the object into the desired sections.

With the clipping surface de�ned, a simple cal-

culation on the current ray location indicates

whether or not the texture should be applied. In

Fig. 9(a) a clipping surface has been constructed

allowing the barrel of the tank to be melted.

Fig. 9(a) also shows that an object does not have

to be restricted to one type of texture, the tank's

camou
age was produced using Perlin's bozo solid

texture.

4.2 Blending Hypertexture

A problem with clipped hypertexture application

is that artifacts can occur at the clipping surface

if the textures used on either side are disjoint.

These artifacts can be removed if the textures are

blended together in the region of the clipping sur-

face.

Examples of blended hypertexture are given in

Fig. 9(b) and 9(c). Fig. 9(b) shows a �re hyper-

texture fading away as it moves down the sphere

and Fig. 9(c) demonstrates a blend between a �re

and melting hypertexture.

(a) Clipped hypertexture application

(b) Fading (c) Merged

Figure 9: Examples of controlled hypertexture.

4.3 Animation

As hypertexture is created by manipulating the

surface densities of an object with a three di-

mensional density modulation function, the ob-

ject may be rendered from di�erent view points

without any inconsistencies in the texture. Thus

introducing frame coherency for animation. Fur-

thermore, making a slight alteration in the con-

trol parameters of the hypertexture can produce

some interesting animations. Fig. 10 shows four

frames from a melting animation, here the fre-

quency of the distorting noise is increased in each

frame.

5 CONCLUSION

This paper has introduced a new method for the

easy application of hypertexture to complex, open

or closed, volume objects. In addition to show-

ing that datasets obtained by evaluating an im-

plicit function can be immediately hypertextured,

it has also been shown that, with the use of a dis-

tance transform, complex volume objects may be



Figure 10: An animated hypertexture.

made to mimic such datasets, and therefore have

a hypertexture applied.

Details have been given about the transform pro-

cess, in particular two new VDTs { the four and

eight pass VCVDT, have been introduced. The

performance of the new VCVDTs has been com-

pared that of the best distance transform repre-

sented by the literature { Mullikin's EVDT, and

has shown the new methods to be both faster and

more accurate.

A brief explanation of the main aspects of hyper-

texture { soft objects, density modulation func-

tions and the ray marching process, has been

given. Finally examples of hypertextured dis-

tance �eld encoded objects have been given, and

also methods for controlling the application of hy-

pertexture have been demonstrated.
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