
1 Introduction

Hypertexturing complex
volume objects

Richard Satherley,
Mark W. Jones

Department of Computer Science, University of
Wales Swansea, Singleton Park, Swansea SA2 8PP,
United Kingdom
E-mail: {csrich, m.w.jones}@swansea.ac.uk

Published online: 15 March 2002
c© Springer-Verlag 2002

This paper will examine hypertexture ren-
dering techniques and will demonstrate how
volume data sets may be adapted in order for
hypertexture to be applied. Details are given
of a process for the conversion of complex
objects, such as CT scans, into accurate dis-
tance fields. Hypertexture is applied to these
objects and example renderings include the
UNC CThead, a chess piece, a dodecahedron
and a tank. Additional information is given
about soft objects, density modulation func-
tions, ray marching and controlling hyper-
texture application.

Key words: Hypertexture – Distance trans-
form – Distance field

Traditional texture mapping techniques, such as
Peachey [1] and Perlin’s [2] solid textures, are lim-
ited to the reproduction of textures that have simple
surface definitions. Many natural textures, such as
fur, have surface definitions that are at best complex.
Others, such as fire and smoke, have no well-defined
surface at all and are therefore unreproducible with
such methods.
Hypertexture [3], developed by Perlin and Hof-
fert, allows the reproduction of such complex tex-
tures through the manipulation of surface densi-
ties. This method is restricted to objects which
can be defined using a modified form of implicit
function [f(x, y, z) = D(x, y, z)], such as spheres
and tori. Dischler and Ghazanfarpour [4] produced
hypertexture-like effects on more general objects,
with the use of geometrical based textures, a method
which involves defining a skeleton for an object,
from which densities are interpolated. Again this
method is limited as it is only applicable to closed
objects.
This paper aims to introduce a new method for
the application of hypertexture to complex (open
or closed) volume objects, such as CT scans and
voxelised polygon meshes, with the use of distance
fields. Distance fields are well suited to hypertexture
application, as each point in the field gives the dis-
tance to its closest surface point, from which density
can be easily calculated.
Section 2 will briefly introduce the process of hyper-
texture application, summarising the concepts of soft
objects (Sect. 2.1) and density modulation functions
(Sect. 2.2). In Sect. 2.3 ray marching is introduced,
and examples of hypertexture effects are given in
Sect. 2.4. Section 3 will develop the new idea of us-
ing distance fields as a basis for applying hypertex-
ture to complex objects. Section 3.1 will demonstrate
how scanned data, such as CT data sets, and previ-
ously voxelised (shell) data sets [5] can be converted
into distance fields using a distance transform. Sec-
tion 3.2 will introduce a new, faster and more accu-
rate vector distance transform, the vector-city vec-
tor distance transform (VCVDT). Example images
will be given in Sect. 3.3. Finally, Sect. 4 introduces
means of controlling the application of hypertexture.

2 Hypertexture

It has already been stated that Perlin and Hoffert de-
veloped hypertexture [3] as a method for replicat-

The Visual Computer (2002) 18:226–235
Digital Object Identifier (DOI) 10.1007/s003710100143

R. Satherley, M.W. Jones: Hypertexturing complex volume objects 227

ing natural phenomena, such as fire and fur, on im-
plicit surfaces. This section will briefly summarise
the main aspects of hypertexture, giving examples of
the achievable effects.

2.1 Soft objects

Before describing how to produce hypertexture ef-
fects, it is necessary to introduce soft objects. A soft
object is an object where the thin surface boundary
has been extended into a larger soft region, across
which density varies from 1 (inside the object) to 0
(outside the object).
The soft region (and therefore the object) is mod-
elled using an object density function, D(p), where
p = (x, y, z) is a point in three-dimensional space.
An example of which, describing a sphere, is given in
(1) and is illustrated in Fig. 1. Note that the outer sur-
face has been cut in order to give a better view of the
two surfaces.

D(p) =




1 if|p|2 ≤ ri
2 ,

0 if|p|2 ≥ ro
2 ,

ro
2−|p|2

ro
2−ri

2 otherwise .

(1)

where ri = inner radius, ro = outer radius and p =
(x, y, z) ∈ R3.
Hypertexture effects can now be achieved by the re-
peated application of density modulation functions
(DMF, Sect. 2.2) to the soft region of D(p), as shown
in the following:

H : R×R3→r, g, b, α

H
(
D(p), p

)= DMFn

(
. . .

(
DMF0

(
D(p)

)))
. (2)

2.2 Density modulation functions

DMFs can be separated into the following cate-
gories:

Position dependent: Functions that are dependent
on p.

Position independent: Scalar argumented functions.
Geometry dependent: Functions that are dependent

on local geometry, for example, surface normals.

Complex DMFs are constructed, as shown in (2), us-
ing a combination of the following basis functions,

Fig. 1. Illustration of (1)

along with control functions such as sine and cosine
(cf. Perlin’s solid textures [2]):

Noise: Approximates band-limited white noise; re-
turns a pseudo-random value in the range (−1, 1).
Several implementations are given by Lewis [6].

Turbulence: Simulates the appearance of Brown-
ian motion (turbulent flow) by the summation of
noise at increasing frequencies (3), introducing
a self-similar f −1 pattern, where f is the initial
frequency.

turb(p) =
∑

i

abs

(
noise(2i p)

2i

)
. (3)

Bias: Defined by the power curve of (4) (illustrated in
Fig. 2a), bias is used to shape the density across
the soft region.

biasb
(
D(p)

) = D(p)

ln(b)

ln(1
2) . (4)

Gain: Defined as a combination of two bias curves
[(5), Fig. 2b], gain is used to alter the rate at which
the density changes in the midrange of the soft re-
gion.

gaing

(
D(p)

) =



bias1−g

(
2D(p)

)
2 if D(p) < 1

2 ,

1− bias1−g

(
2−2D(p)

)
2 otherwise .

(5)

228 R. Satherley, M.W. Jones: Hypertexturing complex volume objects

∆µ
µ1

Soft region

Object

Ray

Bounding box

µ0

2a 2b 3

Fig. 2. The bias (a) and gain (b) power curves
Fig. 3. The ray marching process

Fast alternatives for the bias and gain functions have
been developed by Schlick [7].

2.3 Implementation

The absence of a well-defined surface for the natu-
ral phenomena modelled by hypertexture means that
hypertextured objects will also have no well-defined
surface. This necessitates the use of a ray marcher,
a simplified form of volume rendering [8], when cre-
ating hypertexture effects.
A simplified model of a ray marcher is given in
Fig. 3. A ray, r , is fired from every pixel into the ob-
ject space. If a ray intersects the object’s bounding
box, the entry (µ0) and exit (µ1) points for this ray
are calculated. D(p) is now evaluated at fixed points
along the ray according to

r(k) = µ0 + k∆µ , where k ∈ N . (6)

If p lies within the soft region, the necessary DMF
combination is applied, and a colour, Cλ (λ = r, g, b),
and opacity, α, for this point of the ray are obtained.
This process is repeated along the ray, accumulating
colour and opacity, until one of following three crite-
ria is met:

Ray termination: r(k) = µ0 + k∆µ ≥ µ1.

Inner surface reached: D(p) = 1.

Opaque surface: α ≥ 1.

Evaluating implicit surfaces by ray marching is in-
efficient and does not guarantee the retrieval of all
the roots. A root in the implicit function f(p) = 0
can be easily missed if a zero value occurs between
sample points. Worley and Hart [9] remove this in-
efficiency by replacing the ray marcher with sphere
tracing [10] which guarantees a safe stepping dis-
tance by augmenting function evaluations with the
Lipschitz condition.

2.4 Examples of hypertexture

Figure 4 illustrates some of the effects which may
be achieved with the application of hypertexture. The
DMFs used in each case are as follows:

Unconditional noise: Noise is added to each compo-
nent of p (Fig. 4a).

Directed noise: Noise is added to only one of
the components of p, creating a melting effect
(Fig. 4b).

Fractal noise: Noise of increasing frequency and de-
creasing amplitude is summed and added to p
(Fig. 4c).

Fire: Turbulence is added to each component of p
(Fig. 4d).

Fur: Fur filaments are grown from random positions
(Fig. 4e).

Melting fire: A fire hypertexture is applied to a previ-
ously melted sphere (Fig. 4f).

R. Satherley, M.W. Jones: Hypertexturing complex volume objects 229

a b

c d

e f

Fig. 4a–f. Examples of hypertexture effects: a noise;
b melting; c fractal; d fire; e curled fur; f melting fire

3 Hypertextured volume data

The fact hypertexture is implemented with a ray
marcher (theoretically) allows it to operate on vol-
ume data. Problems arise when it is not possible to
derive an implicit function for an object which is tra-
ditionally rendered using volume-based methods, for
example, CT scan data sets.
Examination of the data sets used for the images
of Fig. 4 and other mathematically generated data
sets, shows that the voxels give values related to the
distance to some feature point/surface. Therefore,
complex objects could be rendered with hypertex-
ture if the data set could be converted into a dis-
tance volume, D, where D(p) is the distance from
p to the closest point on the object’s surface. For
volume data, this can be achieved by measuring the

distance between every background voxel and every
surface voxel and then taking the minimum. This is
extremely computationally expensive – taking over
62 h for the UNC CThead. This can be improved to
2.5 h by employing an octree and using a neighbour’s
closest voxel as a candidate to eliminate parts of the
tree.
The run-time of the distance conversion process
can be considerably improved, at the cost of re-
duced accuracy, with the use of a distance trans-
form (DT) [11–20] – a process used to approximate
Euclidean distance calculations via local distance
propagation. In Sect. 3.1 the DT process will be in-
troduced, followed by a description of the vector-city
vector distance transform (VCVDT) – a new more
accurate DT, in Sect. 3.2. Example images will also
be given.

3.1 Distance transforms

DTs can be separated into two categories, cham-
fer distance transforms (CDTs) and vector distance
transforms (VDTs). The difference being CDTs
propagate distance by addition of known local neigh-
bourhood distances, whereas vectorial information,
from which distances are calculated, is propagated
by VDTs. Both categories are implemented as a two-
stage process – surface extraction followed by dis-
tance propagation.
The first stage of a DT is to segment the data set, f ,
on a regular grid, via a thresholding operation, τ , to
extract the surface of interest, S.

S = {(x, y, z) : f(x, y, z) ≥ τ} , (7)

where x, y, z ∈ Z.

3.1.1 Chamfer distance transforms

The preliminary distance field for a CDT is con-
structed using

D(p) =
{

0 if p ∈ S and ∃, q ∈ p26, q /∈ S ,

∞ otherwise ,
(8)

where p ∈ Z3 and p26 is the set of voxels which are
the 26 neighbours of p.
If a signed field (voxels inside the object have neg-
ative distances) is required, the data sets must also
be classified to indicate whether a voxel is internal,
external or on the surface (9). The signed distance
field is thus the unsigned field multiplied by the cor-
responding classification value (10).

230 R. Satherley, M.W. Jones: Hypertexturing complex volume objects

C(p) =



−1 if p > τ and p /∈ S ,

0 if p ∈ S ,

1 otherwise ,

(9)

D(p)signed = D(p)×C(p) . (10)

CDTs propagate distances with the use of two passes
of the distance matrix, dM , applying (11) to each
voxel in turn, as demonstrated in the pseudo-code be-
low.

D(p) = min[D(x + i, y + j, z + k)+dM(i, j, k)
]

∀ i, j, k ∈ dM, (11)

where p ∈ Z3 and i, j, k ∈ Z.

/* Forward Pass */

FOR(z = 0; z < fz; z++)

FOR(y = 0; y < f y; y++)

FOR(x = 0; x < fx; x++)

D(x,y,z) = (11)
/* Backward Pass */

FOR(z = fz-1; z ≥ 0; z--)

FOR(y = f y-1; y ≥ 0; y--)

FOR(x = fx-1; x ≥ 0; x--)

D(x,y,z) = (11)

Two examples of a chamfer distance matrix are given
in Fig. 5 (see [14] for more examples). Note that each
matrix element gives the distance to the central ele-
ment.
Overall, each voxel is considered twice, with its dis-
tance calculation depending purely upon the addition
of the matrix elements to its neighbours and taking
the minimum.

3.1.2 Vector distance transforms

VDTs [12, 16–18] generally require more passes of
the distance matrix. During each pass the vector
components are added to the necessary vector posi-
tion, the distance is calculated, a decision is made as
to whether any of the new distances are minimal, and
finally the minimal vector is stored.
To allow vector propagation, (8) and (11) are modi-
fied as follows:

V(p) =
{
(0, 0, 0) if p ∈ S and ∃, q ∈ p26, q /∈ S,

(∞,∞,∞) otherwise . (12)

D(p) = min
∣∣V(x + i, y + j, z + k)+dM(i, j, k)

∣∣
∀ i, j, k ∈ dM , (13)

where dM = (Mx, My, Mz).

11

1

1

1

0 1

3 3

3 32

2 2

2

11 1

1

1

01

2

2 2

2

2

22

2

3 3

3 3

B3

(0,0,1)

(0,1,0)

(1,0,0)

(0,1,0)

(0,0,0)

Forward Pass Backward Pass

(0,0,0)

(-1,0,0) (0,0,0)

(0,0,-1)

(0,-1,0)

(0,0,0)

(-1,0,0) (0,0,0)

(0,0,0)

(0,-1,0)

(1,0,0)

y

x

z

y

x

z

y

x

z

B1

y
z

x

y
z

x

F3

y

z

x

F1
F2

B2

5a

5b

6

Fig. 5a,b. Chamfer distance matrices: a city-block;
b complete CDT
Fig. 6. Mullikin’s EVDT matrix passes

Figure 6 shows the matrix passes employed by Mul-
likin’s efficient VDT (EVDT) [18] – the best VDT
given in the literature.
Overall each voxel attempts to update its distance
once during each pass, with the number of cal-
culations and comparison made each time depen-
dent on the matrix used. For example, the EVDT
passes over the data set six times, making a total
of 16 distance calculations and 11 comparisons per
voxel.
Table 1 summarises the findings of a comparison
between the true Euclidean distance field, for the
skull of the UNC CThead, and those generated us-
ing the city-block, complete CDT and EVDT dis-
tance matrices. From the table it can be seen that
the EVDT is by far the superior of the implemented
DTs, having an almost negligible average error per
voxel.

R. Satherley, M.W. Jones: Hypertexturing complex volume objects 231

Table 1. Results of comparing the generated distance fields to the ture Euclidean distance field

Distance Execution Error range Incorrect Average error
matrix time (s) min ⇒ max voxels (%) per voxel

True Euclidean 7560.000 0.000 ⇒ 0.000 0.000 0.000000
City-block 1.320 −2.000 ⇒ 76.060 91.579 12.269071
Complete 3×3×3 4.842 −0.415 ⇒ 11.769 88.774 2.196785
EVDT 7.540 −0.518 ⇒ 2.533 3.449 0.004761

3.2 The vector-city VDT

The previous section concluded that VDTs are far
more accurate than CDTs. In this section a new, more
accurate VDT, based on the city-block CDT, will be
introduced.
The city-block CDT is the most elementary DT.
A fact which has led to it being the basis for
the majority of VDTs. For example, Danielsson’s
4SED [12] uses the same local neighbourhood and
Mullikin’s EVDT [18] uses the vector equivalent
of the two city-block passes in its own. The new
VCVDT extends this heuristic to include all four
matrix passes. That is, the extra passes could also
be implemented as part of the city-block CDT. Fig-
ure 7 illustrates the matrix used during each pass.
The dashed positions in Fig. 7 are omitted during the
matrix passes as they represent redundant calcula-
tions, that is, they perform the same calculation as
a previous position.
The VCVDT is implemented in a manner similar to
that of the EVDT. During each pass (F1, F2, B1 and
B2) the corresponding matrix segment is applied in
the direction indicated by Fig. 7. At each voxel, its
neighbours’ vectors are altered according to the over-
lying matrix element and the minimal vector stored.
If the situation arises where two or more of the dis-
tances are minimal, a tie, no preference is made as to
which of the corresponding vectors is stored. This is
also the case in the EVDT.
Unlike the EVDT, which only stores two vector
slices, the VCVDT stores a complete vector copy of
the distance volume. Storing only two vector slices
was found to be the inferior of the two approaches,
as vector information is lost as a pass progresses
through the data set.
Furthermore, by storing (after each pass) the min-
imal distance along with the minimum vector, the
VCVDT is able to employ Leymarie and Lev-
in’s [17] optimisations. Thus removing the need to
recalculate the distance for the central voxel, saving

(1,0,0)

z

x

y

(0,1,0)

(0,0,0)

F1

z

x F2

y

x

z

y

z

x

y

B1
B2

(0,0,-1) (0,-1,0)

(0,0,1)

(0,1,0)

(1,0,0)

(-1,0,0)

(-1,0,0)

(0,-1,0)

(0,-1,0)

(1,0,0)

(0,1,0)(0,1,0)

y

x

y

x

y

x

z

z

z

B1B2

B4

(0,0,0)

y

x

z

B3

Forward Pass Backward Pass

F4

y

z

x

y

z

x

F2

y

z

x

F3

y

z

x

F1

(-1,0,0)

(0,0,-1) (0,-1,0)

(1,0,0)

(0,-1,0)

(0,0,1)

(0,1,0)

(1,0,0)

(0,1,0)

(1,0,0)(-1,0,0)

(0,-1,0)

(-1,0,0)

(-1,0,0)

7

8

Fig. 7. VCVDT matrix passes
Fig. 8. The 8VCVDT matrix passes

three distance calculations per voxel. Therefore, the
VCVDT makes only 11 distance calculations and 10
comparisons per voxel.
The accuracy of the VCVDT can be improved by in-
creasing the number of passes made by the distance
matrix from four to eight, as shown in Fig. 8, pro-
ducing a VDT resembling Ragnemalm’s [21] corner
EDT. As before, the extra passes could be imple-
mented as part of the city-block CDT, adding an ex-
tra eight distance calculations and comparisons per
voxel. Thus, the eight pass VCVDT makes a total
of 19 distance calculations and 18 comparisons per
voxel.

232 R. Satherley, M.W. Jones: Hypertexturing complex volume objects

Table 2. Results of the comparing the VCVDT distance fields to the true Euclidean distance field

Distance Execution Error range Incorrect Average error
matrix time (s) min ⇒ max voxels (%) per voxel

VCVDT 3.420 −0.334 ⇒ 0.446 1.300 0.000644
8VCVDT 5.470 −0.334 ⇒ 0.334 0.343 0.000223

Table 2 shows the results of the comparison between
the distance fields obtained from the four- and eight-
pass VCVDT and the true Euclidean distance field.
It can be seen from Tables 1 and 2 that the VCVDTs
outperform the EVDT in both speed of execution and
accuracy. A more detailed account of the implemen-
tation and performance of the VCVDT can be found
in [22].

3.3 Hypertextured distance fields

Hypertexture can be easily added to a distance field
by making a slight modification to the object density
function (1):

D(p) =




1 if ‖p‖ ≤ ri ,

0 if ‖p‖ ≥ ro ,
ro−‖p‖
ro−ri

otherwise ,

(14)

where ri = inner radius, ro = outer radius and ‖p‖ =
data set value at p.
That is, the value held at voxel p is used instead
of the magnitude of p. Furthermore, as the data set
holds distance values, it is no longer necessary to
square the inner and outer radii.
Figure 9 demonstrates the application of hypertex-
ture to distance fields of triangular mesh objects and
the UNC CThead.

4 Controlling hypertexture

There is little material available in the literature on
ways to control the application of hypertexture to an
object. This section will demonstrate three applica-
tion control methods which are applicable to hyper-
texture:

Clipping: Hypertexture is only applied to selected
parts of the object.

Blending: Two or more textures can be blended to-
gether.

Animation: Animations can be created by altering
control parameters.

Fig. 9. Hypertexture applied to the distance fields for a
chess piece, a dodecahedron and the UNC CThead data
set

R. Satherley, M.W. Jones: Hypertexturing complex volume objects 233

10a

10b

11a 11b

12

Fig. 10a,b. Clipped hypertexture: a melting tank barrel;
b hairline clipping surface
Fig. 11a,b. Examples of blended hypertexture: a fading;
b merged
Fig. 12. An animated hypertexture

4.1 Clipped hypertexture

More often than not it is only necessary to texture
a certain part of an object. This selective texture ad-
dition can be achieved if it is possible to identify such
sections.
One approach is to define a clipping surface to sep-
arate the object into the desired sections. With the
clipping surface defined, a simple calculation on the
current ray location indicates whether or not the tex-
ture should be applied. In Fig. 10a a clipping sur-
face has been constructed, allowing the barrel of the
tank to be melted. Figure 10b shows a more complex
clipping surface which has been designed to follow
a hairline.
Figure 10a also shows that an object does not have
to be restricted to one type of texture; the tank’s
camouflage was produced using Perlin’s bozo solid
texture [2].

4.2 Blending hypertexture

A problem with clipped hypertexture application is
that artifacts can occur at the clipping surface if the
textures used on either side are disjointed. These ar-
tifacts can be removed if the textures are blended
together in the region of the clipping surface.
Examples of blended hypertexture are given in
Fig. 11. Figure 11a shows a fire hypertexture fad-
ing away as it moves down the sphere and Fig. 11b
demonstrates a blend between a fire and melting
hypertexture.

4.3 Animation

As hypertexture is created by manipulating the sur-
face densities of an object with a three-dimensional
DMF, the object may be rendered from different
viewpoints without any inconsistencies in the tex-

234 R. Satherley, M.W. Jones: Hypertexturing complex volume objects

ture, thus introducing frame coherency for anima-
tion. Furthermore, making a slight alteration in the
control parameters of the hypertexture can pro-
duce some interesting animations. Figure 12 shows
four frames from a melting animation; here the fre-
quency of the distorting noise is increased in each
frame.

5 Conclusion

This paper has introduced a new method for the
easy application of hypertexture to complex, open or
closed, volume objects. In addition to showing that
data sets obtained by evaluating an implicit func-
tion can be immediately hypertextured, it has also
been shown that, with the use of a distance transform,
complex volume objects may be made to mimic
such data sets, and therefore have a hypertexture
applied.
Details have been given about the transform process,
in particular two new VDTs – the four- and eight-
pass VCVDTs – have been introduced. The perfor-
mance of the new VCVDTs has been compared with
that of the best distance transform given in the lit-
erature – Mullikin’s EVDT. The new methods were
shown to be both faster and more accurate.
A brief explanation of the main aspects of hyper-
texture – soft objects, density modulation functions
and the ray marching process – has been given. Fi-
nally, examples of hypertextured distance field en-
coded objects have been given, and also methods for
controlling the application of hypertexture have been
demonstrated.

Acknowledgements. We would like to thank Šrámek and Kaufman [23,
24] for allowing us to use their voxelised tank. This work has been
undertaken with funding from EPSRC, UK, under grant GR/L88238.

References

1. Peachey DR (1985) Solid texturing of complex surfaces.
Comput Graph (Proc. SIGGRAPH ’85) 19(3):279–286

2. Perlin K (1985) An image synthesizer. Comput Graph (Proc
SIGGRAPH ’85) 19(3):287–296

3. Perlin K, Hoffert E (1989) Hypertexture. Comput Graph
(Proc SIGGRAPH ’89) 23(3):253–262

4. J-Dischler M, Ghazanfarpour D (1995) A geometrical
based method for highly complex structured textures gen-
eration. Comput Graph Forum 14(4):203–215

5. Jones MW (1996) The production of volume data from
triangular meshes using voxelisation. Comput Graph Forum
15(5):311–318

6. Lewis JP (1989) Algorithms for solid noise synthesis. Com-
put Graph (Proc SIGGRAPH ’89) 23(3):263–270

7. Schlick C (1994) Fast Alternatives to Perlin’s Bias and Gain
Functions, Chap VI.3, Academic Press, New York, pp 401–
403

8. Levoy M (1988) Display of surface from volume data. IEEE
Comput Graph Appl 8(3):29–37

9. Worley SP, Hart JC (1996) Hyper-rendering of hyper-
textured surfaces. In Proceedings of Implicit Surfaces ’96,
Eurographics, pp 99–104

10. Hart JC (1996) Sphere tracing: A geometric method for
the antialiased ray tracing of implicit surfaces. The Vi-
sual Comput 12(10):527–545; an earlier version appeared
in Comput Graph (Proc. SIGGRAPH ’93)

11. Rosenfeld A, Pfaltz JL (1966) Sequential operations in
digital picture processing. J Association Comput Mach
13(4):471–494

12. Danielsson P-E (1980) Euclidean distance mapping. Com-
put Graph Image Process 14:227–248

13. Borgefors G (1984) Distance transformations in arbi-
trary dimensions. Comput Vision Graph Image Process
27(3):321–345

14. Borgefors G (1986) Distance transformations in digital im-
ages. Comput Vision Graph Image Process 34(3):344–371

15. Vossepoel AM (1988) A note on distance transfromations
in digital images. Comput Vision Graph Image Process
43(1):88–97

16. Ye QZ (1988) The signed Euclidean distance transform and
its applications. In Proceedings, 9th International Confer-
ence on Pattern Recognition, IEEE Computer Society Press,
Los Alamitos, California, pp 495–499

17. Leymarie F, Levine MD (1992) Fast rater scan distance
propagation on the discrete rectangular lattice. Comput Vi-
sion Graph Image Process: Image Understand 55(1):84–94

18. Mullikin JC (1992) The vector distance transform in two
and three dimensions. Comput Vision Graph Image Pro-
cess: Graph Models Image Process 54(6):526–535

19. Borgefors G (1996) On digital distance transforms in three
dimensions. Comput Vision Image Understand 64(3):368–
376

20. Marchand-Maillet S, Sharaiha YM (1999) Euclidean or-
dering via chamfer distance calculations. Comput Vision
Image Process 73(3):404–413

21. Ragnemalm I (1993) The Euclidean distance transform in
arbitrary dimensions. Pattern Recogn Lett 14(11):883–888

22. Satherley R, Jones MW (2001) Vector-city vector distance
transform. Comput Vision Image Understand 82(3):238–
254

23. Šrámek M, Kaufman A (1998) Object voxelization by fil-
tering. In IEEE Symposium on Volume Visualization, IEEE
Computer Society Press, Los Alamitos, California, pp 111–
118

24. Šrámek M, Kaufman A (2000) vxt: a c++ class library for
object voxelization. In Chen, Kaufmann, Yagel (eds) Vol-
ume Graphics. Springer-Verlag, London, pp 119–134

Photographs of the authors and their biographies are given on
the next page.

R. Satherley, M.W. Jones: Hypertexturing complex volume objects 235

RICHARD SATHERLEY is
a post-graduate student at the
University of Wales, Swansea,
UK. He received a first class
BSc. degree in Computer Sci-
ence in 1997. He is currently
undertaking a Ph.D. in Com-
puter Graphics and Visualisa-
tion, researching the computa-
tion and uses of distance fields
in volume graphics. His research
interests include texture map-
ping, texture analysis and syn-
thesis, and hypertexture.

MARK W. JONES is a lec-
turer in the Department of Com-
puter Sicence at the University
of Wales, Swansea. His primary
research interests are in the field
of Volume Graphics, in particu-
lar, distance fields, voxelisation,
modeling and three-dimensional
reconstructions. Mark received
a Ph.D. from the University of
Wales in 1995. He is a member
of Eurographics.

