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Abstract
A new area of biological research is identifying and grouping patterns of behaviour in wild animals by analysing
data obtained through the attachment of tri-axial accelerometers. As these recording devices become smaller and
less expensive their use has increased. Currently acceleration data are visualised as 2D time series plots, and
analyses are based on summary statistics and the application of Fourier transforms. We develop alternate visu-
alisations of this data so as to analyse, explore and present new patterns of animal behaviour. Our visualisations
include interactive spherical scatterplots, spherical histograms, clustering methods, and feature-based state di-
agrams of the data. We study the application of these visualisation methods to accelerometry data from animal
movement. The reaction of biologists to these visualisations is also reported.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.8]: Applications—

1. Introduction

The use of accelerometers to gather data has been investi-
gated for both explicit and implicit user input with the aim
of identifying user actions based upon the accelerometry sig-
nal resulting from the users motion. The visualisation of ac-
celerometer data, as a subject, is in its infancy, and visual-
isations are generally limited to 2D time-series plots (e.g.
figure 1). Recently, accelerometers have been attached to in-
dividual animals by biologists in order to monitor the be-
haviour of the animal over longer periods, through more en-
vironments and at a higher resolution than previously pos-
sible. The quantity and interpretive complexity of this new
application area make it a prime candidate for visualisation.

Biologists at Swansea University have collected large
amounts of data relating to animal movement by attaching
sensors to individual subjects. These devices record a mul-
tiplicity of data, including acceleration and magnetic field
strength in three axes, hydrostatic pressure, light intensity
and temperature, thus recording movements of the subject
animal and details of the body environment while attached
[WSL08]. The small size, low weight and durability of the
devices mean they can be deployed on a wide range of ani-
mals in many different environments [WSL08].

A major focus of research for the biologists is to deter-
mine animal activity and behavioural patterns from the gath-
ered data. The tri-axial acceleration data is of specific inter-
est as it provides quantitative data on body posture and mo-
tion. The three axes of the accelerometer are aligned to the
dorso-ventral axis, the anterior-posterior axis and the lateral
axis of the subject animal. These are termed (in biological
parlance) heave, surge and sway respectively. These axes are
analogous to the Y , Z and X axes in cartesian co-ordinates.
Environmental attributes such as pressure, temperature and
light level, perform a supporting role in the identification of
activities. The sequences and temporal alignment of iden-
tified activities give insight into the function of behavioural
patterns [SWQ∗08]. Effective visualisation of this multivari-
ate data is a challenging proposition which would greatly as-
sist biological analysis of the data.

2. Related Work

Although we have not found any published visualisation re-
search, there has been research in other fields on the uses of
accelerometry data. Automatic pattern recognition methods
applied to accelerometry in Pervasive Computing indicate
the meaning of components and descriptive statistics of the
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Figure 1: Annotated acceleration data from an Imperial Cormorant. The three axes are presented as separate line graphs
showing the sway (red), heave (green) and surge (blue) data, over 33 minutes (vertical reference lines indicate minutes). Sections
of the signal have been manually identified by a biologist as (a) walking, (b) washing, (c) flying and (d) diving behaviours.

signal. We focus on providing a tool to visualise patterns in
the acceleration signal from the movement of wild animals.
The closest related areas in visualisation are concerned with
multi-variate data and vector fields (where we consider the
acceleration signal a sequence of three-dimensional vectors).

In the area of Pervasive Computing, automatic recogni-
tion of user input recorded with an accelerometer is seen as a
way to allow greater freedom of input, or obtain information
about user activity. Kela et al. [KKM∗06] and Schlömer et
al [SPHB08] both describe the use of an accelerometer as an
input device. These methods have been studied in an attempt
to recognise general activities performed by humans and
provide behavioural context information for devices worn by
users [DSGP03]. Generally, methods improve upon an early
description of feature extraction proposed by Van Laerhoven
and Cakmakci [VLC00], which involves creating descriptive
statistics for windowed regions of the acceleration signal.

The unbiased study of the wild animal behaviour has al-
ways been problematic because (i) animals may behave dif-
ferently in the presence of humans [WCS∗89], (ii) they gen-
erally cannot be observed all the time (and sometimes hardly
observed at all) and because, (iii) even if the animal is vis-
ible, it is often difficult to quantify behaviour, particularly
with respect to intensity [DSA∗90]. Remarkable progress in
solid-state technology, however, has led to a recent prolifer-
ation in animal-attached technologies which record may as-
pects of animal biology even when there is no visible contact
between animal and researcher [RCW05]. An apparently at-
tractive solution to solving the problem of recognising and
quantifying behaviour in this domain uses accelerometers
[YSN∗99]. Since accelerometers give information on static
acceleration [SWQ∗08], which is derived from animal pos-
ture with respect to the gravitational field [YNS∗01], and
dynamic acceleration, which is derived from animal move-
ment [SNK∗02], examination of accelerometer data should
enable workers to determine behaviour [SWQ∗08]. How-
ever, the process of allocating accelerometer signals to be-

haviours is complex because the recording frequency has to
be high enough to provide at least 5 data points per repetitive
behaviour cycle (e.g. per wing-beat or stride [RCW05]) and
this should ideally be collected in all three dimensional axes
[WSL08] so that large amounts of data are collected over a
very short time.

The difficulties in determining behaviours by simple vi-
sual inspection of three time-lines in acceleration where di-
verse and temporally-variable patterns may occur over a
wide breadth of scales (ranging from single repetitive move-
ments in e.g. a limb beat, to many hours of immobility dur-
ing rest) have led workers to propose complex statistical ap-
proaches [WBS∗06] that are difficult to grasp and do not
enhance intuition because they are not linked to any visual
representation of the signal which might help identify infor-
mative patterns.

The favoured method to present data and results in perva-
sive computing and biology publications is typically based
on a separate line graph for each component of the sig-
nal, as in figure 1, or the more stylised presentation given
in figure 2, (commonly used to convey the principles to
non-experts). An intensity versus time plot effectively de-
scribes the temporal relation between “behaviour signa-
tures”, recognised as different intensity readings, and identi-
fication of the dominant axis (which represents orientation).
However, this visualisation does not provide easy insight
into the tri-axial nature of the data, as correlation between
the axes has to be consciously observed. Both the pervasive
computing and biology applications rely on statistics derived
from the acceleration data. Many derived values are calcu-
lated over windowed regions and become difficult to com-
prehend because of the different temporal scaling. In biolog-
ical research, comparing directly measured attributes (such
as pressure or temperature) as well as derived attributes is
also valuable. Currently, this is achieved by producing a new
2D time-series graph for the attribute plot, where the x-axes
of all the graphs are aligned. The many related line graphs re-
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Figure 2: Surge, sway and heave acceleration during a
single cormorant dive. Changes in posture during descent,
swimming, and ascent are evident as shifts in the baseline
values of the surge and heave axes. Dynamic acceleration
resulting from individual foot-kicks are identifiable as regu-
lar deviations from the static value, as shown in the insert.

quire extra interpretive effort and expert knowledge from the
user and can be very time-consuming. Commonly, at least
five separate graphs are used to identify a behaviour.

3. Acceleration Data

The acceleration data contains static and dynamic compo-
nents. A stationary device records its’ orientation in the
gravitational field (the static component). When the device
is moving, local acceleration forces distort the reference
axis according to the acceleration vector (the dynamic com-
ponent). Due to the Principle of Equivalence, acceleration
forces and gravitational forces are indistinguishable, and
therefore recorded by the same sensor. Accurately separating
the two components is an active area of research. Assuming
the static component is low-frequency and the dynamic is
high-frequency, the static component can be approximated
by applying smoothing filters to the raw data, and thus the
dynamic component can be inferred.

Biologists have proposed that dominant behavioural pat-
terns may be identified from acceleration data using a hier-
archical approach [SWQ∗08]. The static component is first
used to identify animal posture, a step that immediately
reduces the number of behaviours the animal could have
been performing. Patterns in the dynamic component pro-
vide further insight. The main axis in which movement is
recorded describes the type of motion (e.g. bird flight is char-
acterised predominantly by dynamic changes in the heave
axis, whereas a swimming fish produces regular changes in
sway acceleration), whereas the frequency and amplitude of
changes describe the “vigour”. An example of these obser-
vations are shown in figure 2.

Biologists explore the data by viewing three line graphs
(one for each channel of the tri-axial sensors) using envi-
ronmental data, such as pressure and temperature, to support

the decision making process. After a long search process,
periods of data can be manually identified and labelled as a
specific activity. In practice, interpretation of even basic sig-
nals can be time consuming, difficult, and error-prone due to
(a) three components of two acceleration sources present in a
single signal, (b) the signal being presented in the temporal-
domain (which can be long), (c) no simple visualisation of
body orientation to assist the deductive process, (d) signal
noise, and (e) slight variances in animal behaviour. We pro-
pose methods to visualise accelerometry data which effec-
tively portray postures and variances, reducing the time re-
quired to infer behaviours. We develop these visualisations
to include environmental and derived attributes.

4. Visualisations

This section presents visualisations of Daily Dairy data
[WSL08] for a single device attached to an Imperial Cor-
morant in South America during December 2006. The data
was captured at 8Hz for 8 hours and 40 minutes resulting
in 249,988 measurements. Each measurement contains tri-
axial acceleration, tri-axial local magnetic field intensity, hy-
drostatic pressure, infra-red levels, and temperature, result-
ing in nine channels of data. The data are recorded at 22-bit
resolution onto 128Mb flash RA memory attached to the de-
vice. The accelerometer has an accuracy of ±0.06g, with a
sensitivity range of ±2.21g. Note that recorded data pertain
only to motions undergone by the device, and may be offset
by a fixed angle due to the attachment to the subject animal.
The static component of a datum is computed by normalis-
ing a windowed mean of surrounding data. The size of this
window is a user-option, but typically accounts for 32 data.

4.1. Spherical Scatterplots

Established vector field visualisations [LHD∗04] generally
rely on the topology of the underlying sample grid (usually
two or three dimensional) and encode the vector value as a
colour or glyph in a two or three dimensional space. The one
dimensional space afforded by sampling over time is a limits
the applicability of these methods to these data.

By discarding the time-series and considering each vec-
tor as an offset from the origin, a three dimensional scatter-
plot of the acceleration vectors can be produced (figures 3(a)
and 3(b)). For normalised three dimensional vectors this
method is equivalent to projecting the points onto the sur-
face of a sphere. When the static component is visualised
(figure 3(c)), this performs an implicit conversion to spheri-
cal co-ordinates, (φ,θ,r) (where φ and θ are rotations about
the central axes, and r is the radial distance from the origin).

A scatterplot makes geometric distribution of the data
more apparent, providing an intuitive summary of the ac-
celeration signal. In this case, “features” are deemed any
sequence of interest to the biologists. However, this loose
definition can be made more robust by noting that biologists
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(a) (b)

(c) (d)

Figure 3: Scatterplots of 9 hours of cormorant activity data.
(a) a raw data, (b) Savitzky-Golay filtered (window size is
32), (c) normalised windowed mean, (i.e. orientation vec-
tors), and (d) time based colouring of the filtered data, with
the colour changing from red to yellow with time. In all im-
ages the three axes of the scatterplot relate to the three axes
of the accelerometer, and are colour coded to agree with fig-
ure 1.

infer a great deal from the body posture of an animal (which
translates to the static component of the signal). Postures can
be associated with certain behaviours (as demonstrated in
figures 1 and 2), and in this respect the scatterplot visuali-
sation effectively depicts the major postures which occur in
the data. The strong trends visible in figure 3 are due to the
primary postures of the animal being captured by the accel-
eration sensor and visualised effectively. The location of the
dense point clusters, relative to the reference sphere, provide
an intuitive representation of features previously identified
by an arduous manual search of line-graphs. Furthermore,
the size of a feature is indicative of the variance around a
posture, which relates to the dynamic component of the sig-
nal caused by behaviour. Activities with a large amount of
variance, or strong dynamic components, were the most dif-
ficult to recognise manually, but are easily discernable in the
scatterplot as less dense regions.

A drawback of this visualisation is the lack of temporal in-
formation. Colour may be used to represent time in a fourth
dimension, as shown in figure 3(d) where time is presented
via the “redness” of the data. However, it is not easy to dis-
cern small periods of time when the sequence is long. Even
with a large colour space, the perceptibility of small colour
gradients remain restrictive.

(a) (b)

(c) (d)

Figure 4: Multi-attribute visualisation of 9 hours of cor-
morant behaviour. (a) windowed mean of acceleration data,
(b) normalised acceleration projected from the surface ac-
cording to pressure (an overlay) with pressure also mapped
to colour, (c) pressure replaced with signal energy, and (d)
orientation, pressure (overlay) and signal energy (colour)
visualised together. Note, successive points are connected
with line segments to indicate temporal relation.

4.2. Multi-variate Visualisation of Sensor Attributes

As the orientation vector can be reduced to two polar di-
mensions (even if implicitly) a scalar attribute (mapped to
[0,1]) can be added to the radial distance to find a new dis-
tance from the origin, thereby elevating data points from the
surface of the sphere and replacing the magnitude of accel-
eration with another attribute of the data. As the direction of
acceleration remains, features of the orientation data are pre-
served with respect to angular distance. We term this method
an overlay of the scalar attribute onto the orientation vector
data. Overlays of the pressure attributes and derived signal
energy attributes are shown in figures 4(b) and 4(c), where
the underlaying acceleration data is shown in figure 4(a). The
intention of this method is to demonstrate that other com-
ponents of the data can be used to further differentiate and
identify behaviour, using the acceleration data as a common
reference point for the many attributes.

The benefit of spatially separating data points according
to pressure is best illustrated by figure 4(b). The visual de-
piction of diving behaviour in the overlay presents a new set
of visual features. Ascents and descents of dives are repre-
sented as lines near the poles connecting the surface of the
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Figure 5: Using attributed data to isolate activities. Orien-
tation and pressure (overlay and colour) illustrate a single
dive performed by the cormorant over four minutes, along
with the 2D time-series.

sphere to the elevated data. The large mass elevated from the
sphere and below the equator represent underwater activity
with the major arcs representing changes in body orientation
as the animal moves from one major posture to another.

Correlations with attributes can be found by mapping dif-
ferent attributes to colour and overlay. For example, corre-
lations between pressure and signal energy can be observed
during descent, ascent and swimming phases of the dives by
overlaying the pressure data and mapping signal energy to
colour (figure 4(d)). Signal energy is higher as the animal
descends the water column (south pole), while ascent (north
pole) is relatively passive. This is explained by the fact that
cormorants have to actively descend due to air trapped in
their feathers, while ascent is assisted by this buoyancy. In
this visualisation, four dimensions of the data (acceleration
direction, pressure and signal energy) are presented while
remaining coherent, intelligible and informative.

Individual occurrences of behaviours can be isolated by
reducing the length of the sequence. A single dive, isolated
from the many dives performed by the cormorant (shown in
figure 4(b) and figure 4(d)), is illustrated by figure 5. The 2D
time-series plot of this sequence is also given for compar-
ison. Detailed views of the overlay show the orientation to
be presented without distortion, allowing the method to be
used for analysis as well as exploration. In figure 5, high fre-
quency components of the orientation signal during descent
(caused by flipper beats as the bird actively descends the wa-

(a) (b)

(c) (d)

Figure 6: Spherical histogram of orientation data. (a) un-
derlying acceleration vector data (b) large, (c) medium, and
(d) small bin sizes. Intervals on the bars denote a minute of
data, height and colour indicates bin-count.

ter column) are preserved in the overlay. The complexity of
the underwater swimming period is also more completely re-
alised in the spherical scatterplot than the 2D plot. An indi-
cation of the speed of a movement is given by rendering the
location of measured data points along with connecting line
segments. However, temporal relations of the measurements
are only presented by the connectivity of the line segments.

4.3. Visualisation of Derived Data

The distribution of the orientation data can be visualised by
constructing a histogram over a sub-division of the sphere. In
the spherical histogram, the orientation data density is rep-
resented by the height of the bins, the “footprint” of which
is controlled by the user (figures 6(b-d)). The height of each
bin visually indicates time spent in a particular orientation.

In evaluating the scatterplot (fig. 3) we have confirmed
that features presented to the user correspond to pos-
tures manually identified by the expert. Applying a density
based clustering method allows the discovery of frequently
adopted orientations (see Jain et al. [JMF99] and Xu and
Wunsch [XW05] for a review of data clustering methods).
Given K clusters, fuzzy c-means results in each datum pi
having an associated vector ui = {ui1,ui2, ...uik}, which de-
scribe the degrees of membership to each cluster [Bez81].
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The closest (or major) cluster mi of a point is pi is given by:

mi =
K

argmax
k=1

(uik)

Clusters can be visualised by colouring each point, using
the major cluster mi to determine hue (i.e. hue = mi

K × 360)
and indicating membership degree uimi via saturation (fig-
ure 7(a)).

4.4. Posture States and Transitions

It is attractive to consider a datum with a high uimi value as
indicating the animal was “in” posture mi at that time. From
this, we can introduce a threshold τ to act as a discriminant
between “in-posture” and “non-posture” measurements:

INPOST (pi,τ) =

{
true if uimi > τ

f alse otherwise

Observe that when INPOS(pi,τ) = f alse, pi will be outside
all postures in K due to:(

K
max

1
(uik) < τ

)
→ (∀v ∈ ui (v < τ))

In the time-series, sequences of non-posture data will be de-
limited by either (a) the end of the sample, or (b) a datum
which is in a discovered posture. A non-posture sequence
can be considered a transition when it is terminated by in-
posture data. Automatic discovery of postures, and transi-
tions, allow us to describe the sample with a state machine,
where each state corresponds to a posture, and sequences
of non-posture data correspond to transitions. Allowing for
some fuzziness in the classification, the behaviour of many
animals can be discretely classified, as demonstrated by the
labelling of the data shown in figure 1.

Each identified posture can be visualised in the scatter-
plot space by drawing a sphere located at the centroid of
the cluster, where a sphere at µk encloses all points with
uimi > τ. Connectivity between those states represent tran-
sitions which correspond to sequences of non-posture data,
as defined earlier (figure 7(b)).

Behavioural tortuosity is a measure defined as the Eu-
clidean distance between two points in the accelerometer
time-series:

BHV T (t, t′) =
t′

∑
i=t
‖ f (i+1)− f (i)‖2

where f (i) gives the heave, surge and sway readings for the
measurement at time i. This can be interpreted in a similar
way to geographical tortuosity as it relates to the complex-
ity of the motion. The tortuosity of a transition is the length
of the transition between two states, k and k′. With n transi-
tions of a known length from k to k′, the average transition
can be found by summing the length of all the paths from k
to k′, and dividing by n. To visualise this statistic, we intro-
duce a helix around the edge in the posture graph, where the

(a) (b)

(c) (d)

Figure 7: Utilising data clustering methods. (a) Data are
coloured according to c-means clustering of acceleration
and signal energy values, (b) The posture transition graph
for 9 hours of cormorant behaviour, (c) average behavioural
tortuosity of transitions depicted with a helix, and (d) ab-
stract transitions replaced with the actual transitions in the
data, with an overlay of pressure data (figure 4(b)).

periodicity of the helix indicates the tortuosity, (figure 7(c)).
The number of transistions can also be visualised using this
method. In both cases, the higher period of the helix indi-
cates regions of interest to the biologists, as a large number
of transitions indicates a common movement, and or a high
tortuosity indicates greater energy output (a relation between
energy expenditure and accelerometry readings was shown
by Halsey et al. [HSH∗08] and further investigated by Wil-
son et al. [WWQ∗06]).

Actual transitions in the data can also be viewed by brush-
ing the posture graph to display transitions to and from a
state. These transitions can be viewed with attribute overlays
or colouring, as illustrated by figure 7(d) where the graph is
combined with the pressure overlay (e.g. figure 4(b)).

5. Domain Expert Review

From a biologist’s perspective, the scatterplot serves the crit-
ical function of presenting multidimensional data in an intu-
itive manner. Typically for biologists, analyses of multiple
parallel-logged transducer data (figure 1) require complex
statistics where trends are identified via numbers which need
detailed systematic inspection.

Acceleration data are particularly intractable in this re-
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gard since axes covary and patterns are exceedingly intricate.
One recent suggestion for the identification of behaviours us-
ing tri-axial accelerometry data was to adopt a hierarchical
approach [SWQ∗08]. However, these authors made no sug-
gestion as to how this should be done and others following
this approach appear to have simply worked their way man-
ually through the data (e.g. Gomez-Laich et al. [LWQS08]).
In fact, the scatterplot abides by exactly the suggestion of
Shepard et al. [SWQ∗08] but actually shows the frequency
and extent of the posture groupings (either by the histogram
function, figure 6, or by point density, figure 3) and is able
to do so as an obvious function of other recorded parameters
(e.g. figure 4) for any selected subsets of the data incorpo-
rating hugely different time periods (figure 4(b), figure 5).

Further, the approach shows precisely the importance of
animal posture in different behaviours and forces workers
to consider body attitude more thoughtfully. This has conse-
quences for biological insights that go beyond simple recog-
nition of particular behaviours such as ‘flying’, ‘sitting on
the water surface’, ‘diving’ (see figure 7). For example,
figures 4(b) & 4(d), which treat Imperial Cormorant div-
ing behaviour, immediately show the consistency of the de-
scent angle over multiple dives (the ‘rod’ extending from
the sphere’s South pole) and the sinusoidal variance in the
return-to-the-surface angle (the ‘diffuse cloud’ emanating
from the sphere’s North pole), suggesting the birds may
be slowing their ascent to the surface, possibly to reduce
the likelihood of the bends (directly answering the open re-
search question posed by Sato et al. [SNK∗02]). The pattern
is made clear by consideration of a single dive in figure 5,
which also highlights how the body angle of the bird dur-
ing the bottom phase of the dive (dark red region to the left
of the sphere) is much more variable and not as horizontal
as it is at the surface (small blue area on the left hand side
of the sphere’s equator). This variance in body posture dur-
ing the bottom of the dive presumably reflects the complex-
ities of prey search and pursuit. Here, the sphere describes
posture changes over time precisely, which immediately en-
courages an analysis of the tortuosity of the ’track’ to see
how patterns may relate to prey search and capture. To our
knowledge, this has never even been considered before in
the wealth of literature of body acceleration in diving ani-
mals (e.g. Yoda et al. [YSN∗99], Lovvorn et al. [LWK∗04],
Sato et al. [SWT∗07]).

It is thus with great excitement that these visualisations
have been adopted by the Swansea University Smart Tag re-
search group, and we fully expect fundamental new insights
into the way animals operate that we could not have con-
ceived before.

6. Conclusion

This work has presented and explored a new approach for the
treatment of animal-acquired tri-axial acceleration data that
encodes all three acceleration lines into a single point whose

position in space moves according to acceleration. Other,
simultaneously-recorded or derived parameters can be in-
corporated into the visualisation by colour mapping or by
increasing the distance of the normalised acceleration vector
from the sphere. Previously, visualisation was generally lim-
ited to multiple 2D time-series plots of the data. Our meth-
ods add increasing ability to first detect postures (spherical
scatterplot), then behaviours (overlays) and finally, statistics
of behaviours (spherical histogram and posture state graph),
directly mirroring the methodology of the biologists and
greatly simplifying data exploration, analysis and hypothe-
sis generation through effective visualisation. Additional ex-
amples are shown in figure 8 and an accompanying video.
These methods afford biologists a facility to examine up to
six dimensions simultaneously and provides a powerful and
intuitive representation that has already revealed hitherto un-
considered insight into animal behaviour. Furthermore, we
have incorporated very positive domain expert feedback.

Despite this rapid progression we feel this application
of accelerometry has far more to offer and we have only
scratched the surface of understanding the challenges of its
visualisation. The future direction is to try out more visuali-
sation techniques and continue improving animal behaviour
identification with a goal to achieving a higher level descrip-
tion of animal motion.
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(a) (b) (c) (d)

Figure 8: Visualisations of accelerometry from other animals. (a) A Leatherback Turtle with a Daily Diary device attached to
the carapace, (b) Four hours of the turtles’ behaviour visualised with our method. Two minutes of rolling behaviour can be seen
as deviations from the vertical column. (c) Nineteen hours of albatross data showing soaring behaviour. the bird rolls its’ body
to fly efficiently for long periods, resulting in an arc across the top of the sphere. (d) Pressure overlay and colouring of 16 hours
of penguin data containing diving behaviour. This can be compared with figure 4(b), to observe similarities in diving depiction,
and dissimilarities in behaviour (e.g. angles of descent and ascent).
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