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Abstract In this paper we seek to eliminate the noise

caused by caustic paths during progressive Monte Carlo

path tracing. We employ a filtering strategy over path

space, handling each subspace using specialised deriva-

tions of path tracing and progressive photon mapping.

Evaluating diffuse paths with path tracing allows the

use of sample stratification over both pixels and the

image as a whole, whilst sharp detailed caustics are

produced using progressive photon mapping. This is an

efficient, low noise progressive algorithm with vanish-

ing bias combining the advantages of both Monte Carlo

methods, and particle tracing.

Keywords Global Illumination · Monte Carlo

Integration · Path Tracing · Photon Mapping

1 Introduction

Simulating global illumination efficiently is a challeng-

ing problem in computer graphics. In order to provide

an effective full global illumination solution, the robust

simulation of each type of light transport that occurs

in a scene must be considered. Many state-of-the-art

global illumination algorithms in use today find their

foundations in Monte Carlo integration and the path

tracing algorithm as presented by Kajiya [14]. Such

methods can provide the full global illumination solu-

tion for scenes with both complex geometry and mate-

rials, making them robust under many lighting condi-

tions. Unfortunately, path tracing suffers in the pres-
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ence of highly peaked BRDFs and in the generation

of caustics from small light sources. In these scenarios,

the probability of sampling the light source through

specular interactions is low, resulting in high sample

variance. For point light sources, direct caustics can-

not be evaluated by eye paths since explicit sampling

of the light source is required from a specular surface.

These problems are compounded by the use of BRDF

importance sampling, since specular paths with high

throughput can create unpredictable peaks in the im-

portance sampling distribution. Even after evaluating

many samples, the resulting high variance shows up as

high frequency noise in the image (for example Figure

1). It can be seen that filtering out the direct caustic

components from the sample set provides a significant

decrease in variance, at the expense of removing the

important information and realism caustic paths bring

to the image.

Photon tracing techniques such as photon mapping

can efficiently and robustly capture caustic effects with

minimal high frequency noise. Such methods are con-

sistent, but biased. Tracing paths from the light source

focuses on evaluating higher radiance paths as opposed

to paths of high camera importance. Whilst advanta-

geous for caustic lighting, this removes the ability to ar-

bitrarily distribute samples across the image to aid con-

vergence for pixels exhibiting high variance from diffuse

lighting. In many cases, this can result in some pixels

converging quickly, whilst other pixels have insufficient

photons and exhibit high levels of error. In this pa-

per we seek to eliminate high frequency image noise by

separating and selectively evaluating the radiance con-

tributions at each path vertex on the fly, depending on

the path characteristics. We define a set of filters over

path space enabling us to treat each subpath contri-

bution differently according to its surface interactions.
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(a) Full global illumination (b) Identical samples to (a), with direct
caustic contributions omitted

(c) Full global illumination, with 16x
the samples of (a) and (b)

Fig. 1 The addition of caustics to a scene results in slower convergence, due to increased sample variance. (a) The full path
tracing solution after 128 samples per pixel shows a significant amount of high frequency noise. (b) By evaluating the same
samples but omitting just the direct caustic paths, we already see significant visual improvements with respect to Monte Carlo
noise (but at the expense of losing direct caustic lighting). (c) The full global illumination solution with 2048 samples for
comparison. Noise is still clearly visible in many areas

We use standard unbiased path tracing to evaluate the

mainly diffuse paths, and employ an adaptation of the

stochastic progressive photon mapping (SPPM) tech-

nique of Hachisuka et al. [9] to render fast crisp caustics.

Despite exhibiting bias early on in rendering, we take

advantage of the desirable low memory and vanishing

error properties of SPPM that are commonly associ-

ated with unbiased rendering. In doing so we present

the following novel contributions:

• Efficiently combining path tracing and progressive

photon mapping techniques to produce a vanishing

error and low variance multi-pass progressive ren-
dering algorithm.

• A set of filtering criteria over path vertices are pro-

posed, to reduce potentially high variance samples

during Monte Carlo rendering using on the fly ver-

tex contribution filtering.

• Separate progressive rendering of unbiased non-

caustic lighting and caustic lighting.

• We demonstrate superior RMSE convergence

against both standard path tracing and stochastic

progressive photon mapping.

2 Related Work

Particle tracing techniques allow radiance to be accu-

mulated starting from the light source, as opposed to

the camera, allowing caustic samples with higher proba-

bilities and hence lower pixel variance. Dutre et al.’s [7]

light tracing algorithm can be seen as the inverse of

path tracing, making explicit connections to the image

plane at each path vertex in order to accumulate energy

at each pixel. Due to this explicit connection however,

many specular paths cannot be evaluated.

Complex geometry and occlusion also causes prob-

lems for particle tracing methods if light sources in the

scene are occluded from the visible geometry, resulting

in an undesirable number of low contribution particles.

For this reason techniques that use both camera impor-

tance and photon importance have been introduced.

Lafortune and Willems [16] and Veach and Guibas

[19] independently developed bidirectional path tracing

(BDPT). BDPT independently traces paths from the

camera and the light source connecting their path nodes

to provide the benefits of both path and light trac-

ing. Explicit connections between intermediate nodes

of each path can also be formed in such a way as to fur-

ther reduce variance [20]. Despite this, for highly spec-

ular paths BDPT performs no better than light tracing,

as contributing connections between vertices cannot be

made. Furthermore, due to the independence of each

sample pair, there is no correlation between neighbour-

ing pixels; a main weakness of the original path tracing

algorithm.

Another technique introduced by Veach and Guibas,

Metropolis Light Transport (MLT) [21], generates new

paths based on the mutation of a previous path, al-

lowing correlation between pixels and favours sampling

high contribution path space. This improves estima-

tions in difficult lighting situations. Due to increased

sampling of high contribution paths, often darker areas

of the image are left under sampled and noisy compared

to standard Monte Carlo methods. MLT also suffers
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in the presence of highly specular BRDFs, where even

small mutations cannot effectively generate the desired

low probability samples.

Cline et al. [3] introduced Energy Redistribution

Path Tracing (ERPT), improving upon the efficiency

of MLT by adding the benefits of stratified sampling

across the image. ERPT is also able to exploit pixel

correlation unlike path tracing, but requires the mu-

tation chains used for each Monte Carlo sample to be

the of same length to remain unbiased. This forces the

renderer to perform extra work in some areas unneces-

sarily and if the chains are too short, energy deposited

at neighbouring pixels leads to blotchy images and low

frequency noise. This effect is exacerbated by high en-

ergy caustic paths.

Other unbiased rendering methods have focused

specifically on improving caustics. Budge et al. [1] use

a photon shooting pre-process to provide importance

information to a caustic rendering pass. However this

initial pre-process can be expensive and the number of

photons must be chosen carefully to provide an efficient

caustic lighting estimate. Furthermore, their method

suffers from the same issues with low probability paths

and small light sources as previous path tracing meth-

ods.

DeCoro et al. [5] presented a density-based sam-

ple filtering technique that temporarily removes path

contributions based on neighbourhood similarity. Al-

though providing visible reductions in noise for their

test scenes, filtering over the presence of focused caustic

lighting may have a detrimental effect to the image. In

addition, they filter over the radiance contributions of

complete path samples, as opposed to per-vertex con-

tributions, removing potentially low noise samples as

well as those that cause high variance.

Since they have more relaxed constraints, biased

methods such as photon mapping [13] can generalise

visibility queries, allowing them to widen path space

for generating caustics at the expense of approxima-

tions. This is especially helpful for combinations of

specular-diffuse-specular surface interactions, such as

light sources enclosed in glass. Spencer and Jones use

hierarchical photon maps to speed up caustic gener-

ation [17], and relax the photon map to reduce vari-

ance [18]. Recently Dammertz et al. [4] have introduced

a biased progressive method, which also divides path

space to allow for specialised algorithms to compute a

solution for each subspace, in a similar fashion to our

work. Although converging to a unique solution, their

method is biased and does not provide physically cor-

rect results. We divide our path subspace differently to

better suit the unbiased rendering techniques we em-

ploy and also provide comparisons to the stochastic

variant of progressive photon mapping (SPPM) which

exhibits reduced aliasing and better convergence prop-

erties than the standard PPM used for comparison in

their paper.

Stochastic progressive photon mapping (SPPM)

[9, 11] devised by Hachisuka et al. provides improve-

ments over classic photon mapping, eliminating the

need to store all previous photons, and interleaves pho-

ton shooting and distributed ray tracing passes. This

allows for both a progressive reduction in bias due to

the decreasing kernel radius used for photon gathering,

and a theoretically unbiased progressive algorithm.

PPM is effective in regions of high photon density

(such as caustics) but exhibits poor convergence in low

photon density regions. We leverage the properties of

progressive photon mapping to provide better conver-

gence properties caustic lighting, combining this with

path tracing whose strengths lie in solving diffuse di-

rect and indirect lighting. This allows us to produce a

hybrid progressive algorithm exhibiting reduced vari-

ance and error characteristics with vanishing bias. We

start with a brief overview of the original progressive

photon mapping algorithm followed by an introduction

to our algorithm in which we incorporate it.

2.1 Progressive Photon Mapping

Progressive photon mapping is an iterative two pass

algorithm that uses multiple photon maps and succes-

sively decreasing gather radii to estimate flux over the

region visible through each pixel. As the kernel radius

for each pixel tends towards zero, the bias vanishes re-

sulting in a theoretically unbiased algorithm. For each

pixel, a camera hitpoint is located on a visible diffuse

surface, followed by the generation of a global photon

map at each pass. Flux estimates are then computed at

around each hitpoint using density estimation. Statis-

tics are recorded for each pixel, including the flux es-

timates and kernel radius used to gather the photons.

After each iteration the statistics are updated in order

to reduce the kernel radius for subsequent iterations

and proportionally adjust the accumulated flux. Con-

trary to conventional photon mapping, the photons can

now be discarded leading to a low and bounded mem-

ory consumption, and a new photon map generated to

produce a more refined pixel estimate over a smaller

kernel radius. A single parameter α dictates the rate

of radius change at each iteration i, in relation to the

number of photons found within that radius Ri(S). At

iteration i and for a pixel region S, we can update the

total number of accumulated photons Ni(S) based on

the number of new photons Mi(xi) accumulated at the
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current hitpoint for this iteration xi:

Ni+1(S) = Ni(S) + αMi(xi) (1)

Ri+1(S) = Ri(S)

√
Ni(S) + αMi(xi)

Ni(S) +Mi(xi)
(2)

As the radius is progressively reduced, the total accu-

mulated flux over the pixel region must similarly be

updated in order to maintain an accurate radiance es-

timate. The new flux estimate Φi(x,ω) is calculated

from the current iteration photons and added to the

total unnormalised flux over the pixel region.

In keeping with classical photon mapping, this flux

estimate can be divided by the search area πRi(S)2,

and normalised by the total number of photons accu-

mulated so far (computed in Eqn. 1), producing a ra-

diance estimate after each iteration. Since convergence

only occurs due to the decreasing kernel radius, the pa-

rameter α provides the balance between variance and

bias. In this work we offset this slower convergence by

evaluating these lower density regions using path trac-

ing, whilst taking advantage of the effectiveness of PPM

in areas of high photon density.

3 Algorithm Overview

Our hybrid algorithm operates in a multi-pass progres-

sive manner, providing rapid convergence for diffuse

lighting and caustic lighting independently. The first

pass traces paths from the eye using standard path

generation techniques, terminated by Russian roulette.

Unlike path tracing, we do not yet calculate radiance

contributions at each vertex. Instead we use the pro-

ceeding surface interactions to filter each vertex and

classify the associated subpath into either our diffuse

or caustic subspace. Radiance contributions are calcu-

lated for diffuse subpaths and added to our diffuse im-

age buffer. Our caustic subspace is then evaluated using

our modified PPM technique. Caustic photons are gen-

erated from the light sources and deposited on diffuse

surfaces, terminated using Russian roulette or prema-

turely if they do not perform specular interactions that

may contribute to our caustic subspace. A kD-Tree is

constructed around the deposited photons in order to

accelerate the final pass of PPM photon gathering. This

pass utilises hitpoints from the initial path generation

pass to gather photon flux and compute the caustic

radiance estimate. After each iteration, the intermedi-

ate radiance estimates computed by the two algorithms

can be combined to produce the full global illumination

solution. Maintaining a disjoint path space for each al-

gorithm means that no bias is introduced at the com-

positing stage, and we require no complex or expensive

weighting functions.

3.1 Path Space Separation and Filtering

We draw upon regular expression notation and the path

notation of Heckbert [12] in order to concisely describe

our path space separation. Examples of contributions

made by common paths along with their path space

regular expressions are shown in Figure 2. We can ap-

ply pattern matching over these regular expressions in

order to filter the paths generated by both our Monte

Carlo and photon mapping techniques. We first con-

struct an expression to encompass all paths in our caus-

tic subspace:

E(S|D)∗D+S+D?L (3)

Notice firstly that this incorporates both direct and

single-bounce indirect caustics due to the optional

diffuse vertex, D?. Indirect caustics are also a com-

mon source of high variance in path tracing, even

viewed through multiple diffuse bounces. Low proba-

bility paths generated by BRDF importance sampling

at the diffuse vertex, D+, coupled with high lumi-

nance caustic paths created by the S+L subpath can

vastly increase variance, even when viewed indirectly

through other diffuse vertices. Based on this caustic

regular expression we can define our two path sub-

spaces. Our camera generated path space, evaluated

using path tracing, encompasses primarily diffuse paths

with higher path probabilities, resulting in lower vari-

ance:

(S1) ES∗L: Light sources viewed directly or indirectly

via specular surfaces,

(S2) ES∗D+L: Direct and multiple bounce indirect dif-

fuse lighting (optionally viewed via specular sur-

faces),

(S3) ES∗D(S|D)∗DDL: Indirect diffuse lighting

viewed via other surface interactions.

Although paths with diffuse-specular interactions are

included in this subspace, potentially leading to high

pixel variance, the successive diffuse vertices (...DDL)

mean that these paths are of relatively low luminance.

Evaluation of single and multiple bounce diffuse light-

ing is also performed at this stage as it responds well to

sample stratification. This reduces variance and allows

the application of multiple importance sampling [20]

for direct lighting at diffuse vertices. The remainder of

the path space is handled by our progressive photon



Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination 5

mapping implementation, and generated from the light

sources:

(S4) LS+D+(S|D)∗E: Direct caustics, formed from

the light source.

(S5) LDS+D+(S|D)∗E: Indirect caustics, reflected

from a single diffuse surface.

(a) Direct lighting and fully
specular paths (ES∗D?L)

(b) Single bounce diffuse
lighting (ES∗DDL)

(c) Multiple bounce diffuse
lighting (ES∗DDD+L)

(d) Direct and Indirect
caustic lighting

Fig. 2 Filtering over path traced samples allows noisy direct
and indirect caustics (d) to be separated from lower vari-
ance samples (a)-(c) and more efficiently generated via pho-
ton tracing

For simplicity we will refer to our path tracing subspace

from S1 to S3 as ’non-caustic’ or ’diffuse’ and the path

subspace handled by the progressive photon mapping

algorithm (S4 and S5) as ’caustic’. All possible paths

are included in these two subspaces. This allows us to

evaluate the full global illumination solution, where our

two methods have no overlapping path space.

3.2 Path Tracing

The first pass in each progressive iteration evaluates

the image radiance from our non-caustic path subspace

using Monte Carlo path tracing. In our implementation

we separate the path generation from radiance evalua-

tion to perform our added filtering step. Firstly, we gen-

erate stratified samples for BRDF sampling and trace

eye paths through the scene, recording geometric and

surface interaction data for each path vertex. This in-

cludes the path throughput up to the current vertex,

and reference to the surface’s BRDF to allow postponed

radiance evaluation. A bit string is computed during

path generation representing the path’s regular expres-

sion. The lower 11 bits store a binary representation of

the path vertex interactions where diffuse vertices are

represented by zeros and specular vertices by ones. We

also encode the path length (4 bits), and whether or

not the final path vertex implicitly hits a light source

(1 bit).

Pattern matching is applied to this bit string, and

the necessary direct lighting samples at diffuse ver-

tices and subpath radiance estimates are computed.

Our filtering ensures implicit lighting from emissive

surfaces is not calculated after diffuse-specular inter-

actions (...DS∗L contributions) as this corresponds to

direct caustic lighting. Secondly, we skip the computa-

tion of direct lighting from specular-diffuse interactions

(...DS∗DL contributions) which correspond to indirect

caustics. As can be seen in Figure 2, this allows us to

reduce the noise from diffuse paths quickly relative to

noise that would be introduced by caustic paths that

we do not evaluate.

3.3 Caustic Evaluation

The second pass of each iteration evaluates caustic

lighting using progressive photon mapping. Having gen-

erated an eye path for each pixel, we can reuse hitpoint

data from our path tracing stage to define our local

visible pixel regions. The first time a diffuse hitpoint is

found for each pixel, we initialise the local statistics for
our progressive photon mapping, using the pixel foot-

print [11] to dictate the initial kernel radius. For subse-

quent passes these provide the points within our pixel

region S around which we gather our photons. Often it

is necessary to generate multiple camera paths per pixel

in Monte Carlo rendering, to perform anti-aliasing as

well as improved direct lighting estimates. We exploit

this to enable improved initial radii values for our pixel

statistics by averaging across multiple camera hitpoints,

which is especially helpful in the presence of geometric

discontinuities and distorted or highly anisotropic ray

footprints.

Having found our current hitpoints, we now need to

trace and accumulate photons in order to evaluate their

pixel contributions. As with our path tracing phase,

we are only interested in a subset of all possible paths

and so will apply our strict pattern matching on the

fly during photon generation. For scenes with difficult

caustic lighting, the number of caustic photons in re-

lation to non-caustic photons may be high. This re-
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duces the number of photons that we need to store per

pass allowing faster photon gathering without loss of

caustic lighting quality. Efficient photon distribution is

a common problem for all photon tracing techniques

and some recent solutions using adaptive and Metropo-

lis based photon sampling can also be applied to our

method [2,8,10]. The photon tracing stage is complete

when we have deposited the desired number of caustic

photons in the scene. For scenes with few or difficult to

find caustic paths this can lead to excessive rejection of

photons, hence we also terminate photon emission after

a larger number of emissions if we have not deposited

the desired amount of caustic photons.

3.4 Photon Gathering

Our photon gathering phase closely resembles that of

the original PPM method. For readability, we maintain

similar notation to that used in the original SPPM pa-

per. In contrast to the original algorithm, we are com-

puting only partial radiance estimates over each pixel

region using our caustic photon subset. Using the pixel

hitpoints stored from the path tracing stage and corre-

sponding shared photon statistics, we need to update

the accumulated unnormalised flux over the pixel region

S. For the current iteration, i, we gather the photons

that are located within the sphere defined by our cur-

rent local search radius Ri(S) using our kD-Tree. The

updating procedure for the shared statistics remains the

same as for SPPM, following Equations 1 and 2 but in-

stead operates over our caustic subset computing the

new accumulated caustic photon count N c
i+1(S) using

our caustic photons gathered in this iteration, M c
i (xi).

Filtering for only caustic photons allows faster pho-

ton gathering and flux estimates to be computed over

the pixel regions. This relies on the assumption of con-

stant photon density across the gather region which

is maintained in our method. Photon generation itself

is unaffected by our filtering approach, and remains a

purely stochastic process. This still results in a con-

stant, non-uniform distribution of photons across the

scene when averaged over many iterations, and hence

a constant distribution across our visible pixel regions

also. Our method operates in the same manner as PPM

where the rate of radius reduction for each iteration is

dependent solely on α, and we also rely on the same as-

sumptions of constant photon density across the gather

region. As with the distributed ray tracing incorporated

in SPPM, our path tracing pass generates new hitpoints

for each pixel at each iteration. Our M c
i (xi) photons are

accumulated over a region centred around this new hit-

point xi ⊂ S. The total unnormalised flux that these

new caustic photons in xi contribute to S is therefore:

Φci (xi,ω) =

Mc
i (xi)∑
j=1

fr(xi,ω,ωj) Φj(xj ,ωj) (4)

We now update the current flux estimate for this region

τi(S,ω) by multiplying it by the change in radius from

Ri(S) to Ri+1(S):

τi+1(S,ω) = (τi(S,ω) + Φci (xi,ω))

(
Ri+1(S)

Ri(S)

)2

(5)

Updating our shared statistics after each iteration en-

sures an increasingly accurate flux estimate is obtained

over each pixel region. To produce our full global illumi-

nation image this flux estimate needs to be normalised

and combined with our path tracing radiance estimate

for non-caustic lighting during image reconstruction.

Image Reconstruction After each iteration of the algo-

rithm we can output our current preview of the final

image by combining the pixel radiance estimates ob-

tained from our two path subspaces. Since these sub-

spaces evaluated by each method do not overlap, it is

a trivial process of summing the radiance accumulated

by the path tracing with the current progressive photon

mapping estimate. The flux estimates from our shared

photon statistics first need to be normalised with re-

spect to the total number of photons emitted so far.

As with our statistics updating procedure, our radiance

evaluation computation is closely derived from that of

SPPM. Assume that we have traced all possible pho-

ton paths (both caustic and non caustic) and separated
them into our two disjoint subsets. Using our shared

radius we could then gather photons that lie within xi
and compute the contributing flux from each subspace

independently:

Φci (xi,ω) =

Mc
i (xi)∑
j=1

fr(xi,ω,ωj) Φj(xj ,ωj) (6)

Φpi (xi,ω) =

Mp
i (xi)∑
k=1

fr(xi,ω,ωk) Φk(xkωk) (7)

Where Mp
i (xi) = Mi(xi)−M c

i (xi), the number of new

non-caustic photons gathered around xi. Given that we

are gathering both sets of photons over the same region,

our relative corrected flux values τ ci (S,ω) for our caus-

tic photons and τpi (S,ω) for our non-caustic photons re-

main proportional. After i iterations, we therefore have

total of N c
e (i) caustic photons and Np

e (i) non-caustic
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photons. As a result our radiance evaluation can simi-

larly be separated;

L(S,ω) = lim
i→∞

τ ci (S,ω)

(Np
e (i) +N c

e (i))πRi(S)2

+
τpi (S,ω)

(Np
e (i) +N c

e (i))πRi(S)2

As our path tracing algorithm computes radiance values

for all non-caustic lighting, we can substitute the pho-

ton mapping non-caustic radiance estimate with the un-

biased path tracing estimate producing our full global

illumination solution;

L(S,ω) = lim
i→∞

τ ci (S,ω)

(Np
e (i) +N c

e (i))πRi(S)2

+

∫
S

∫
2π

fr(x,ω,ω
′)L(x,ω′)(n · ω′)dω′dx

4 Results and Discussion

All images are rendered at 512x512 resolution on a PC

with 8Gb of memory and a 2.66Ghz Intel Core i7 CPU

using 8 threads. When rendering using our algorithm,

we set the initial Monte Carlo rendering phase to eval-

uate 2 samples per pixel and the photon mapping pass

to deposit a total of 50,000 caustic photons, or termi-

nated when 400,000 photons have been emitted. This

provides us with a good balance between the conver-

gence of caustic and diffuse lighting for our test scenes,

as well as optimising the use of the hitpoint data gen-

erated in the path tracing pass. Table 2 shows the dis-

tribution of work.

Our first test scene (Figure 4) is a Cornell Box scene

containing glass and chrome spheres, which produce
a wide variety of caustic lighting from an area light

source. High frequency noise in the path tracing im-

age is very apparent and obscures details in the image.

Using our method dominant high frequency noise is re-

moved, and far better clarity is visible in all areas of

Caustic Paths Photons
Scene Direct Indirect Deposited Emitted

Cornell PT 153k 218k - -
Box Ours (122k) (172k) 4.71mil 52.2mil

Ring PT 1328 12.8k - -
Ours (1069) (10.1k) 5.40mil 37.7mil

Shapes PT 16.7k 10.0k - -
Ours (12.3k) (7.31k) 6.22mil 81.1mil

Table 1 Comparison of the number of caustic paths gener-
ated using path tracing and our method. Our filtered photon
mapping pass evaluates many times more caustic samples,
than path tracing. The first two columns for our method (in
brackets) show the number of radiance contributions excluded
by our path filtering. Both algorithms were run for 5 minutes

(a) Cornell Box

(b) Ring

(c) Shapes

Fig. 3 Graph plots of the log root mean squared error versus
time for our three test scenes. Our hybrid method provides
consistently lower error for all our scenes, and the order of
convergence is dependant on the balance of diffuse and caustic
lighting in the scene

the image. Since we show equal time comparisons, the

number of diffuse samples evaluated by our method is

reduced due to the additional time required for pho-

ton mapping. Despite this, regions of diffuse lighting

have not noticeably suffered, due to the elimination of

high frequency noise by our path filtering. In compari-

son to SPPM, our algorithm exhibits far less noise from
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Path Tracing Our Method SPPM Converged Path Tracing

Fig. 4 Path tracing is effected by its poor evaluation of caustic paths compared to our method, without introducing the lower
frequency noise produced by SPPM visible around the image edges, or the higher frequency noise on the back wall and glass
ball. Images for all three methods were rendered in 30 minutes

Scene Iterations Path Tracing Photon Generation Photon Gather Image Reconstruction

Cornell Box Our Method 820 1413s 289s 70.45s 28.28s
(30mins) PT 2034 1802s - - -

SPPM 1282 188s 280s 1313s 21.4s

Ring Our Method 586 1413s 324.7s 51.45s 12.43s
(30 mins) PT 1446 1800s - - -

SPPM 929 370s 721s 689s 11.45s

Shapes Our Method 170 139.2s 56.3s 32.21s 5.05s
(4 mins) PT 458 240.30s - - -

SPPM 186 63.52s 80.62s 92.0s 4.85s

Table 2 Time spent in each of the main stages of our algorithm with reference to path tracing and SPPM, in order to produce
the images shown in this section. Note that each iteration of our method evaluates two Monte Carlo paths, and gathers photons
around one hitpoint. Path Tracing times for our method include the path generation, regular expression filtering and diffuse
radiance calculations. For SPPM it represents the time spent in the distributed ray tracing passes

Path Tracing Our Method SPPM Converged Path Tracing

Fig. 5 Equal time comparison after 30 minutes between path tracing, our method and SPPM. A low noise path tracing image
is also provided for reference, which took many hours to render. Close ups of the same images show reductions in noise for our
method compared to both methods

diffusely lit regions, whilst producing caustics of equiv-

alent quality.

Figure 5 shows results from our Ring scene, a metal

ring on a flat surface in a walled environment lit by a

small area light source. Path tracing cannot effectively

render the cardioid caustic due to the small difficult to

sample light source, resulting in an initial increase in

image error (Figure 3(b)). SPPM has noticeable noise

as a result of low photon densities on the wooden floor

and bricked walls. Our method evaluates all light paths

effectively, producing diffuse lighting with similar qual-

ity to the path tracing image, and caustics comparable

to those produced by SPPM. Finally, we present a sce-

nario that can be challenging for both camera path and

light tracing methods (Figure 6). Due to its open na-

ture, particle tracing techniques perform poorly, allow-

ing many emitted photons to miss the geometry entirely

or be deposited in regions with low camera importance.



Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination 9

Path Tracing Our Method SPPM Converged Path Tracing

Fig. 6 Equal time comparison after 4 minutes of rendering between path tracing, our method and SPPM. This scene displays
both direct and indirect lighting, in addition to a range of reflected and refracted light paths. Due to its open nature, both
the indirect diffuse lighting on the blue box, and the caustic lighting seen via reflection and refraction are difficult to evaluate

An area light source illuminates a large plane contain-

ing diffuse, glass, and reflective objects. Caustics are

visible directly as well as via reflections and transmis-

sion, thus also posing a challenge for path tracing tech-

niques. Interestingly, path tracing provides lower overall

error for this scene than SPPM due to the wide disper-

sion of photons traced from the light source. Even with

the similar photon distribution, the direct light at dif-

fuse vertices provides vast improvements. Computing

RMSE values for our three scenes further demonstrates

the effectiveness of our approach. Where diffuse light-

ing presents more of a challenge (such as the Cornell

Box scene), convergence for our method follows that of

path tracing. In scenes dominated by caustics, where

path tracing struggles (Ring scene), our method resem-

bles the convergence rates of SPPM. In more mixed

environments such as our last scene, both the caustic

and diffuse lighting converge at similar rates, with nei-

ther of our two methods consistently dominating the

rate of convergence.

5 Conclusions and Future Work

Achieving high efficiency whilst maintaining robustness

is a desirable but difficult to attain property for com-

puter graphics algorithms. It has been shown that a sin-

gle specific algorithm can often solve a particular light

transport problem more efficiently than a generalised

one [4,6,15]. We have presented a novel multi-pass pro-

gressive algorithm that combines the benefits of both

Monte Carlo path based based and progressive photon

based methods via path space filtering. Though sepa-

rable path space filtering methods have been used be-

fore for full global illumination [1,4], our algorithm has

the advantage of being both progressive and physically

based, allowing convergence to the correct solution or

until the desirable level of quality is achieved. Our al-

gorithm represents a concept that is equally applicable

to any Monte Carlo based method such as bidirectional

path tracing or Metropolis light transport. A desirable

addition would be to allow the automatic adjustment

of Monte Carlo and photon paths during rendering, im-

proving convergence for scenes with difficult caustic or

diffuse lighting. Care would need to be taken however

to ensure that portions of path space were not under

sampled prematurely, which could yield higher variance

than has yet been identified.
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