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We introduce a novel algorithm for progressively removing noise from
view-independent photon maps while simultaneously minimizing residual
bias. Our method refines a primal set of photons using data from multi-
ple successive passes to estimate the incident flux local to each photon.
‘We show how this information can be used to guide a relaxation step with
the goal of enforcing a constant, per-photon flux. Using a reformulation of
the radiance estimate, we demonstrate how the resulting blue noise photon
distribution yields a radiance reconstruction in which error is significantly
reduced. Our approach has an open-ended runtime of the same order as un-
biased and asymptotically consistent rendering methods, converging over
time to a stable result. We demonstrate its effectiveness at storing caustic
illumination within a view-independent framework and at a fidelity visually
comparable to reference images rendered using progressive photon map-
ping.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation; 1.3.5 [ Computer Graph-
ics]: Computational Geometry and Object Modeling—Physically based
modeling

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Photon Mapping, Blue Noise, Photon
Relaxation, Global Illumination

1. INTRODUCTION

A caustic is the term given to the component of global illumination
in which part of the light transport path contains a S* D sub-path
before reaching the eye. A commonly cited example is light that
has been refracted through turbulent water forming characteristic
rippled patterns on the bottom of a lake or pool. Other, less distinct
examples include the illumination in a room lit by a glass light bulb
or sunlight shining through a window onto a wall.

The space of all caustic paths exhibits a very high energy vari-
ance since only a fraction conveys any significant contribution
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from the light to the eye. As a consequence, locating these paths
with a minimum of both time and error has presented a signif-
icant technical challenge. Bi-directional algorithms based on ray
tracing have proven to be the most effective, and both biased and
unbiased solutions are now widely adopted. Among the most pop-
ular is the photon mapping method [Jensen 1996]: a two-pass, con-
sistent, particle-based algorithm which has become a mainstay in
many production environments owing to its simplicity, versatility
and speed.

Although photon mapping remains one of the fastest and most
computationally efficient methods of synthesizing caustics, the rel-
atively low resolution of the photon dataset means the resulting ren-
dered images often lack the high visual fidelity of those generated
by algorithms based on unbiased Monte Carlo integration. This is
unsurprising given that such methods solve the rendering equation
independently at each pixel by progressively sampling the global
path space. Though inevitably costly, subtle details are correctly
resolved and noise is guaranteed to vanish. Furthermore, unbiased
Monte Carlo methods run within a near-constant memory bound, ir-
respective of the number of samples. By comparison, photon map-
ping exploits local integral correlation using a static, sparse point
distribution in order to reconstruct exitant radiance. This approach
is very fast since the relatively low number of photons means the
dataset can be compiled quickly. However, discrepancy and noise
in the point set become problematic when rendering ST D caustic
illumination since the photon map needs to be visualized directly.

More recent work has sought to address these limitations through
the development of iterative density estimation with a progressively
shrinking kernel bandwidth [Hachisuka et al. 2008]. This progres-
sive solution to photon mapping allows exitant radiance to be re-
constructed from very large numbers of incident photons without
the need to store the entire dataset all at once. For scenes dom-
inated by caustic illumination, this approach is particularly pow-
erful. However, since the location of radiance estimates must be
known a priori to photon propagation, it is an intrinsically view-
dependent technique.

In this paper, we seek to combine the favorable qualities of view-
independent photon mapping with those of unbiased or asymptoti-
cally consistent Monte Carlo methods. We accomplish this by using
multiple passes of incident photons to progressively refine an ini-
tially noisy photon distribution. We employ a novel redistribution
strategy based on point relaxation to equalize the incident radiant
flux arriving over the Voronoi cell corresponding to each photon in
the map. Our approach has an open-ended runtime similar to pro-
gressive Monte Carlo methods, but results in a view-independent
photon map that can be re-rendered from arbitrary viewpoints. This
yields the following principal advantages:

—The view-independent photon map generated by our method ex-
hibits a blue noise spectral signature [Ulichney 1988] that is
ideally suited to low-bandwidth kernels. We can achieve high-
quality results with between 10- and 20-nearest neighbors re-
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Standard photon mapping
[Jensen 2001]

Our method Progressive photon mapping

[Hachisuka et al. 2008]

Fig. 1. A flower in a glass vase backlit by a strong point light source. Second from left: an unmodified photon map with 500k photons, rendered using
20-nearest neighbors in the radiance estimate. Second from right: using the map from the previous frame, our method progressively refines the distribution
with data from 10M additional photons. These ancillary photons are cast individually and destroyed once their contributions have been accumulated, making
the process memory efficient. Far right: the same scene rendered using progressive photon mapping and halted after 10M photons (a runtime equivalent to our

method).

sulting in minimal levels of bias (Figure 1), very fast photon map
queries and a corresponding reduction in rendering time.

—Unlike the method of photon redistribution described in Spencer
and Jones [2009], our progressive method converges over time to
a stable result. Furthermore, no explicit feature detection needs
to be implemented.

2. RELATED WORK

Physically based methods of synthesizing caustics can be divided
between biased and unbiased methods. Kajiya’s [1986] pioneering
work on the rendering equation led to the development of a gen-
eralized formulation to the global illumination problem. This ap-
plication of Monte Carlo methods to solve the recursive integral of
reflected radiance led to the introduction of path tracing as the first
unbiased global illumination algorithm. While conceptually sim-
ple, Kajiya’s solution is slow to converge when a significant propor-
tion of the total energy arrives over a restricted set of paths. Lafor-
tune and Willems [1993] and Veach and Guibas [1994] indepen-
dently addressed this issue with the introduction of bi-directional
path tracing (BDPT), thereby greatly lowering estimator variance
in many scenes.

Despite improvements in importance sampling over multiple
sub-paths [Veach and Guibas 1995], bi-directional path tracing still
performs poorly under certain conditions. Veach and Guibas [1997]
responded to these problems with the introduction of Metropo-
lis light transport (MLT), an algorithm based on the Metropolis-
Hastings approach to solving complex, multidimensional integrals
through selective mutation and rejection. Later, Cline et al. [2005]
proposed a variation based on a selective redistribution of energy
between correlated integrals (in this case, nearby pixels). Lai et
al. [2007] expanded on this concept by creating an initial pool of
paths across the image domain and using them to guide successive
iterations.

A second class of global illumination algorithms exploits integral
correlation in a biased way such that the expected value of the esti-
mator does not equal the function being estimated. These methods
reduce variance and increase speed but often at the expense of vi-
sual accuracy. Photon mapping [Jensen 2001] uses a flux propaga-
tion pass to cache incident illumination which is later referenced by
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the rendering pass. The exitant radiance at a point is reconstructed
from the local photon distribution using k-nearest neighbor (k-NN)
density estimation. Although photon mapping is a general global
illumination solution, its use of a sparse point dataset leaves it vul-
nerable to visible error due to point discrepancy as well as bias from
the kernel.

A wide variety of algorithms have been proposed to deal with the
problem of noise in the radiance estimate. Jensen and Christensen
[1995] suggested selecting an optimal kernel bandwidth through
the use of differential checking. Schregle [2003] later proposed a
more sophisticated bandwidth selector guided by the observation
that the variation in noise over a random photon map conforms to
a normal distribution. Further research focuses on complementing
intelligent bandwidth selection by dynamically adjusting the filter
support of the kernel, thereby minimizing proximity and boundary
bias. Schjgth et al. [2005] proposed deriving a structure tensor from
the local distribution in order to constrain smoothing perpendicu-
lar to the illumination gradient. Later, Schjgth et al. [2007] adapted
Igehy’s [1999] ray differential framework to store additional in-
formation about photon footprints, thereby greatly increasing the
fidelity of highly focused caustics.

The photon relaxation method [Spencer and Jones 2009] ad-
dresses the problem of bias-variance trade-off by directly remov-
ing noise from the underlying photon distribution. The algorithm
runs as two additional passes between photon propagation and ren-
dering: feature detection and point relaxation respectively. Feature
detection analyzes the photon distribution and isolates those points
which lie near edges, boundaries and other important visual cues.
During the relaxation step, each photon is repelled from its neigh-
bors with a force proportional to their relative proximity. After a
sufficient number of iterations, the spatially adjacent neighbors for
any given photon become equidistant and, as a consequence, noise
is diffused away. In regions of high-frequency detail, migration is
constrained by feature bases defined in the previous pass. The re-
sulting distribution has a blue noise spectral signature, one which
has been shown to be an optimal sample pattern in many areas of
computer graphics [Ulichney 1988], including photon mapping.

One of the advantages of photon relaxation is that noise is re-
moved once as a pre-pass rather than at each radiance estimate.
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Fig. 2. (a) The Voronoi tessellation links flux density with the discrete
set of photon sites. (b) A k-NN estimator reconstructs exitant radiance area
using the disk of radius d spanning the subset of K -nearest photons local
to the query point Z.

This allows for the use of very low-bandwidth kernels and corre-
sponds to a significant reduction in photon map rendering cost.
More recently, Hachisuka et al. [2008] introduced progressive
photon mapping: a hybrid global illumination solution that retains
the robustness of Jensen’s original two-pass method while asymp-
totically converging to the correct result. Motivation for this algo-
rithm stems from the observation that scenes dominated by caustic
illumination are difficult to sample using Monte Carlo integration,
and prohibitively expensive to store as a photon map due to the
high memory overhead. Progressive photon mapping stores an ar-
ray of primary and specular ray hit points which are used to gather
flux from small sets of propagated photons. Photons landing within
the radius of a hit point are captured and accumulated and the
hit point’s radius decreased accordingly. After a sufficiently large
number of photons have been absorbed, noise and bias vanish. Al-
though progressive photon mapping is not unbiased, the algorithm
is consistent, converging asymptotically to the correct solution in
the limit. The authors later expanded their method to support ef-
ficient sampling across multiple domains [Hachisuka and Jensen
2009], thus allowing rapid resolution of distributed ray tracing ef-
fects such as glossy reflection and depth-of-field blur. Knaus and
Zwicker [2011] also proposed a formulation of progressive pho-
ton mapping that does not require the storage of local statistics and
generalizes the technique to arbitrary kernels. Jarosz et al. [2011]
proposed a progressive adaptation of photon beams to render scat-
tering in participating media. More recently, Doidge et al. [2012]
suggested mixing progressive photon mapping with Monte Carlo
path tracing to address shortcomings inherent to both techniques.

3. RECONSTRUCTING THE ILLUMINATION
FUNCTION USING THE PHOTON MAP

The photon map as defined by Jensen [2001] encodes the function
of reflected radiance, L, over the combined space over all illumi-
nated surfaces, o, using propagated packets of energy which are
cached as a point cloud. An estimate of L is typically reconstructed
from a subset of photons local to a query point, . Since photons
are effectively Dirac delta functions of radiance, the estimator must
smooth the sparse point data over some interval, thereby allowing
the function to be sampled continuously.

3.1 The Radiance Estimator

The de facto method of estimating L is through k-nearest neighbor
density estimation. A disk of radius d is expanded around & until
it contains K; photons. The flux of each photon in this subset is

Progressive Photon Relaxation . 3

(a) Heterogeneous flux (b) Homogeneous flux

Fig. 3. A constant PDF encoded using both a stochastic and a blue noise
photon distribution. (a) Stochastic sampling results in high variance in cell
area which must be counterbalanced by high-variance photon flux. (b) A
blue noise distribution results in low variance in cell area and thereby ex-
hibits near-homogeneous photon flux.

multiplied by the surface BRDF, f,, and the reciprocal of the area
of the disk. Summing over all K yields the estimate, L:

K,

A 1

Lz —a3) = 7 E filz, & < a_}p(i))A@p(i), (@))]
=1

where «J is the exitant ray direction and &J, is the trajectory of the
incident photon.

The bandwidth of a k-NN estimator can be adjusted by varying
the size of K, and should ideally be as small as possible so as to
minimize bias from the span of the kernel. However, as the number
of photons in K decreases, variance and discrepancy between each
element translates into variance in the radiance estimate.

We explain the concept of variance between photons in Figure 2a
where a uniform function of flux density, B, over the domain o is
encoded by a set of IV photons seeded stochastically according to a
continuous uniform distribution. By visualizing the Voronoi tessel-
lation, V, of the underlying point cloud, we can link the discrete,
finite set of photon sites with the continuous flux density function
from which they are derived. Intuitively, the region of space associ-
ated with a single photon, n, is the area of its Voronoi cell, Ay (n).

It is apparent from this example that the difference between cell
areas over V' varies considerably. Since the flux density function we
are trying to reconstruct is constant and each photon is initialized
with a constant flux, A®,, the area, .A,, should in turn be uniform.
In practice, stochastic seeding translates into variable cell areas and
hence variance in the k-NN estimator.

A good strategy to reduce discrepancy between photons is to
sample the space of the emitter using a quasi-random sequence
[Keller 1995]. This approach is effective when photons are reflected
and transmitted specularly, however, scattering BRDFs and com-
plex area emitters scramble coherent photon paths resulting in ran-
domization in the projected distribution.

3.2 Reducing Kernel Variance

Increasing the bandwidth of the k-NN radiance estimator effec-
tively smooths out noise due to discrepancy, as illustrated in Figure
2b. As K grows larger, the disk of the kernel more closely approx-
imates the sum of A4, (n) in K. The drawback of large values of K,
is loss of detail due to increased kernel bias. If this is to be avoided,
the resolution of the photon map must also be increased to compen-
sate. This strategy is demonstrated in Figures 4a and 4b where the
number of stored photons and the size of K is increased 10-fold
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Fig. 4. A complex dielectric object generating both specular and glossy caustics. (a) An unrelaxed photon map exhibits high levels of noise. (b) Noise
reduction by using an order of magnitude more photons in both the map and k-NN kernel. (c) Integrating flux density over each photon counterbalances
variance but leaves residual error. (d) Our method relaxes the photon map thereby minimizing error due to discrepancy.

resulting in a reduction in noise while preventing any increase in
smoothing due to bias.

Whereas the bias of an estimator increases in proportion to the
square of the bandwidth, k2, the variance diminishes according to
the inverse relationship % [Silverman 1986]. Thus, reducing the
variance by half incurs a four-fold increase in bias which must be
compensated by a similar rise in photon storage. This geometric
increase in both storage and query time makes eliminating noise
by increasing photon density impractical as a general solution.
Hachisuka et al. [2008] show that, even when tens of millions of
photons are stored, bias and noise often preclude the effective use
of the photon map.

Given that increasing the number of stored photons is untenable,
we instead consider how a stochastically seeded photon distribution
can instead be “optimized”, thereby reducing noise without the ge-
ometric storage increase. The source of noise, as discussed in Sec-
tion 3.1, is shown to be variance in Voronoi cell area coupled with a
homogeneous value of A®, across all photons. The first optimiza-
tion we propose is to counterbalance variance in A, by accurately
estimating the integral of flux density over the domain of the cell
of each photon. This approach shares conceptual similarities with
Suykens’ and Willems’ [2000] solution to reducing photon storage
in regions that reach a specified density.

Figure 3a illustrates the concept diagrammatically by encoding a
uniform flux density function using a randomly seeded distribution
of photons. In this example, the color of each cell associated with
photon n corresponds to the relative magnitude of the estimated
flux, A®,(n). Photons shaded in red encode more energy than those
shaded in green and yellow, in this case because the larger areas
accumulate more of the energy from the flux density function.

We demonstrate the effect of heterogeneous flux on the radiance
estimate in Figure 4c. Here, the integral of B is solved progres-
sively using the Monte Carlo method discussed in Section 4.1. Cru-
cially, the number of stored photons is the same as Figure 4a. De-
spite no increase in photon density, compensating for local Voronoi
cell variance by accurately computing A®, significantly reduces
noise.

The limitation of this approach is visible as a distinctive mottling
effect which remains even when the estimates of A®, are allowed
to converge. These artifacts appear due to the circular approxima-
tion of the k-nearest Voronoi cell areas not precisely counterbal-
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ancing the Monte Carlo integral of flux (Figure 2b). Since the cell
associated with each photon is not an explicitly defined primitive,
compensating for this error by precisely computing its physical
area is expensive. More significantly, irregular cells adapt poorly
to changes in the flux density function and converge at variable
rates. Hence, to minimize kernel artifacts we consider a new ap-
proach that is better suited to the circular kernel used by the k-NN
radiance estimate.

3.3 Photon Redistribution

In order to minimize the mottling artifacts described above, we de-
fine a means of physically manipulating individual photon Voronoi
cells so that their occupied area can be more accurately computed
by the density estimation kernel. A blue noise distribution is opti-
mal for this purpose since the variance in cell area is locally min-
imized. Opting for such a strategy introduces the scope for very
low-bandwidth kernels, a desirable feature since both bias and the
cost of k-nearest neighbor density estimation at render time remain
low. Consequently, our goal is to relax the photon map by enforc-
ing a capacity constraint, aiming to make the integral of flux over
each photon homogeneous while allowing the area to change. A
diagrammatic example is depicted in Figure 3b. Notice how each
photon is at near-constant flux since the area of its Voronoi cell has
been adjusted to match those of its neighbors.

In order to achieve this property we require a robust method for
precisely controlling the area of each photon’s Voronoi cell. While
this is not a trivial task, the problem of producing good blue noise
distributions has received considerable attention from the research
community. Lloyd’s method [1983] is one popular algorithm based
on iterative relaxation. Given an initial point set, every member is
repeatedly moved to the centroid of its corresponding Voronoi cell,
the average migration distance attenuating as the number of itera-
tions increases. Later, Secord [2002] successfully adapted the algo-
rithm for non-uniform density functions by weighting each cell so
that its area is proportional to the value of the function at that point.
Balzer et al. [2009] formalized this concept with the definition of
capacity constraint as a means to avoid the isotropic patterns that
appear in sets converged using Lloyd’s method. Succinctly, the op-
timal capacity, cy, of a Voronoi cell associated with point ¢ should
be:
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2564 passés

1024 passes
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Fig. 5. Progressive photon relaxation. (a) The probability density function of B (inverted for clarity). (b) Stochastic sampling results in a high-discrepancy,
persistent photon dataset. (c) Progressive refinement of the flux capacity of each cell. Here, orange represents values of ~y that are greater than 1 and blue,
values that are less than 1. Residual flux imbalance is due to diffusion bias injected by the relaxation kernel, however, this is corrected by the density estimation
kernel. (d) After relaxation, the distribution exhibits a characteristic blue noise signature.

fg p(z)da
g )

where p is the bounded density function over domain o, and g is
the number of cells. By enforcing this rule for every point during
relaxation, the distribution converges to a blue noise distribution of
extremely high quality.

Directly applying similar techniques to redistribute the photon
map is impractical. Balzer et al.’s method implements a discrete
space adaptation of Lloyd’s method which uses a high-density point
superset to enforce the capacity of each Voronoi cell. While this
could theoretically be extended to 2.5-dimensional photon space,
the memory overhead required to store a fine-grained sampling of
p at the photon level would be prohibitive. Furthermore, the run-
ning time for the capacity-constrained method given in Balzer et
al. [2009] is O(g? + ghlog %) for g cells and h points. Given that
caustic photon maps containing in excess of 1,000,000 photons are
not uncommon, this geometric running time becomes problematic.
Despite these drawbacks we can see that a capacity-constrained
photon distribution over incident flux would be highly desirable.
In the following sections we propose a method to achieve flux ca-
pacity constraint progressively, thereby avoiding excessive storage
overheads.

(@)

cy (i) =

4. OUR METHOD - PROGRESSIVE PHOTON
RELAXATION

The goal of our algorithm is to enforce a capacity constraint sim-
ilar to Equation 2 over all photons in /N. The density function, p,
becomes the function of radiant flux density, B. Thus, for an opti-
mized, converged distribution, every photon, n € N, should con-
form to the following equality:

B(a)da = i/B(a)da, 3)
Ay (n) [N /o
where o is the combined space of the photon distribution on all
illuminated surfaces in the scene. This equation stipulates that the
integral of the flux density over each Voronoi cell, V'(n), should be
equal to ‘—]{” of the integral of flux density over o, or the mean flux
incident to all photons in V.

We initialize our algorithm by propagating the primal set, N,
of photons which are scattered and stored using the standard tech-
niques described by Jensen [2001]. The initial power of each pho-
ton is set to ﬁ@a, where ®,, is the combined radiant power of all

light sources in the scene. We describe these photons as persistent
since they remain in memory and are referenced at render time to
estimate L. In the pseudocode example, Algorithm 1, this step is
encapsulated by the function CASTPERSISTENTPHOTONS().

Algorithm 1 PROGRESSIVERELAX()
1: N < CASTPERSISTENTPHOTONS()

2:T=1
30t =y
4: repeat
5 T,,=aol {Eq 13}
6: whileT <T,,do
7: m < CASTTRANSIENTPHOTON()
8: if m is stored then
9: T=T+ 6t
10: n < FINDINTERSECTEDCELL(m)
11: Yon) = Ya(n) + AP,(m)
12: end if
13: DELETEPHOTON(m)
14:  end while
15:  foralln € N do
16: ry(n) < ESTIMATELOCALAREA(n)
17: ro(n) = 1)\ A {Egs. 8 and 15}
18:  end for
19:  foralln € N do

200 F(n) = Fn) + W(n)f(n)
21:  end for
22: until User stop

{Eq. 15}

Initial discrepancy in the distribution means that the flux capacity
of any given persistent photon in [V is likely to be in an unbalanced
state (Figure 2a). Consequently, we need to adjust the area, Ay,
of each Voronoi cell until an equilibrium is reached. In order to
determine by how much a cell needs to be enlarged or reduced to
meet Equation 3, we calculate the disparity, v, between the two
sides of the expression:

Y(n) = ﬁ/ﬂB(a)da{ B(a)da]l . )

Ay (n)

The coefficient computed by this function implies that if a persis-
tent photon cell’s flux capacity is p-times the mean cell flux capac-
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ity, its area should be scaled by % in order to balance the constraint
equation. This is based on the assumption that the energy across
the cell and outlying space is homogeneous. In practice, variation
in flux density necessitates iterative refinement, thereby allowing
the estimator to converge toward the correct solution.

4.1 Monte Carlo Estimation of Flux

The first problem we encounter when enforcing the constraint equa-
tion is how to accurately evaluate the integral of flux density over
the area spanned by each individual Voronoi cell. This is problem-
atic because B is unknown a priori to rendering and hence cannot
be explicitly sampled. In order to seek a solution, we re-express the
function of flux density as its derivative, B = %. Substituting this
into the integral in Equation 3 yields:

B(a)da = / (@) 4. )
Ay(n) Ay(n) da

‘We next consider that a photon map stores radiant energy as dis-
crete packets of flux with power A®,. It follows that the function
of incident illumination can be precisely encoded using an ancillary
photon map, M, of infinite size and infinitesimal per-photon flux.
Such a discretization allows the integral of B over a Voronoi cell to
be expressed as the limit of the following summation:

/ 4@ 10 = lim ST ARm). (6)
A 1

v(n) da WﬁomEV(n)

Here, m is an element of the set of all photons in M that intersect
with the Voronoi cell, V.

Assuming photon trajectories are functions of independent and
identically distributed random variables, we substitute Equation 6
with a Monte Carlo estimator of flux capacity. The variance of such
an estimator diminishes asymptotically as more samples are added.
This allows us to progressively refine the solution to an arbitrary
precision in an open-ended way. We classify photons used to refine
the estimate as being transient. This is because they are destroyed
once their contribution has been accumulated resulting in a con-
stant memory bound. Throughout the following sections, transient
photons are referred to explicitly. All other references to photons
are implicitly persistent or else refer to those used by standard or
progressive photon mapping.

To ensure correctness, the primal flux, A®,, of all transient pho-
tons in M must equal those in /N. The estimate must be also nor-
malized as more samples of A® are included. This yields the fol-
lowing Monte Carlo summation:

A®(a) 1
da ~ — AP, (m). (@)
/Av<n) da Tmezv‘:m '
Here, T is the sample density, defined as 1 + % where |M]| is

the total number of transient photons cast. A®,(m) is the flux car-
ried by m. Note that the flux encoded by each persistent photon is
included in its estimate, hence 7' = 1 when | M| = 0.

Our algorithm progresses by casting one transient photon at a
time (CASTTRANSIENTPHOTON() in Algorithm 1), locating the
Voronoi cell, n, in the persistent set with which it intersects, then
adding its value of A®, to the accumulated estimate at n. The
transient photon is then destroyed. Intersected cells can be found
rapidly in O(log|N|) time using a balanced k-d tree. Christensen
[1999] employs this approach when querying precomputed irradi-
ance estimates.
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(a) (b)

Fig. 6. (a) A lattice of photons and associated bounding spheres arranged
in an ideal blue noise configuration. The radius, 7y, is directly estimated
from the underlying distribution. (b) ry is adjusted by 4, yielding .. This
value is used by the relaxation operator to repel or attract neighboring pho-
tons. The magnitude of the resultant force, f.,, is calculated to move 4 so
that its bounding sphere grazes that of j.

Using the discretization in Equation 7, we can re-express Equa-
tion 4 in terms of an estimate of ~:

-1

1
A = 1 DARm) | DAY . ®

meM meV(n)

For brevity, Equation 8 simplifies the estimation of incident flux
by reducing it to a scalar quantity. To allow for variations in chro-
maticity, we also store the accumulated estimation of the energy of
the photon in RGB color space.

4.2 Cell Area Approximation

The value of 4 computed by Equation 8 specifies the change in area
of each persistent photon’s Voronoi cell required to satisfy the flux
capacity constraint. Unfortunately, accurately adjusting cell area is
a non-trivial operation for several reasons. As stated in Section 3.2,
each Voronoi cell is not an explicitly defined primitive and hence
cannot be arbitrarily scaled. In addition, variation in the position of
neighboring photons further influences its resultant size and shape
making it hard to accurately constrain.

Our solution is to apply iterative point relaxation through con-
trolled diffusion, encouraging neighboring persistent photons to ad-
just their proximity by attraction and repulsion. To achieve this, we
approximate the Voronoi cell, V' (n), using a sphere centered around
each photon’s position. The area of each sphere is estimated from
the local distribution and can be used to guide the movement of ad-
jacent neighbors. The resultant migration of points then indirectly
affects their corresponding cell areas. Since a sphere is scaled by a
single parameter, r, the space to be explored is a monotonic, uni-
variate function. Hence, increasing a photon’s radius increases the
integral of B over the cell area and vice versa.

As stated previously, our goal is to move persistent photons so
they become locally equidistributed with a characteristic blue noise
spectral signature. Thus, we consider a hexagonal lattice of per-
fectly arranged points which represent an ideal configuration, then
determine what criteria are met for said points to be considered re-
laxed.

This concept is illustrated in Figure 6a where a group of pho-
tons are shown with their Voronoi cells and representative bounding
spheres. The radius of each sphere has been chosen to most closely
match the area of its associated cell. We compute this radius, 7y,



as being half of the sum of the mean distance and standard devia-
tion of the distance to its 6-nearest neighbors. In this configuration,
sphere boundaries precisely graze those adjacent to them. Thus, we
propose that an optimally relaxed distribution will minimize the
distance between the perimeter of its spherical boundary and those
of its neighbors. In the event of a neighboring sphere boundary be-
ing either too close or too far, the photon must subsequently be
repelled from or attracted to that neighbor respectively.

4.3 Relaxation Operator

We calculate a force, f, that is used to modify the position of each
persistent photon based on the compound influence of its spatially
adjacent neighbors. The force between a photon, %, and its neigh-
bor, 7, is a function of the finite difference in position, AZ. This
is defined as AZ(s,5) = Z(5) — Z(¢) (illustrated in Figure 6b). The
goal of iterative relaxation is to move each point until it comes to
rest in a state of equilibrium.

The magnitude of the force acting along each AZ(s, 5) is the sum
of two components. The first applies a positive or negative pressure
proportional to the estimated flux disparity, 4. We use Equation 8
to modify the radius of each photon’s cell area approximation, 7y,
yielding a new term, 7. :

7y (n) = ry(n)/F(n) . ©)

Photons are encouraged to move apart or cluster together de-
pending on the specified change in cell area. We illustrate this force
in Figure 6b where the change in measured radius due to 4 causes
photon radii to overlap. The force between ¢ and j is the motion
required to push them apart (or pull them together) so that their
bounding spheres come as close as possible to grazing. We define
this scalar component, f.,, as:

[oG9) = [AZG )| = (ry () +7,() - (10)

To assist in equidistribution we also apply a diffusive force that
acts to move photons into the ideal configuration in Figure 6a. Here,
i is away from or toward j by the difference in r, with the aim of
equalizing the areas of adjacent cells. We define this scalar compo-
nent, f, as:

foG,5) = rv(G) — (). (11)

Equation 11 is moderated by Equation 10 so diffusion is inhib-
ited when it violates the flux capacity constraint.

Combining these two components, we express the resultant force
on photon 7 as the mean force exerted by all spatially adjacent pho-
tons, K.

AZ(, 5)
LG, 5) + fu( ) . 12
;ex ARG )H[fu) fuli i) ] (12)

Z

IKfl

‘We determine which photons are spatially adjacent and therefore
belong in K if either they are a member of the 6-nearest neighbors,
or they satisfy the condition |AZ(i, j)|| < 2r,,(i).

Finally, to allow for correct redistribution on curved surfaces,
relaxation must be performed in the tangent space of ¢. Hence, f is
projected into the plane derived from the photon’s surface normal
before being added to Z.
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(@ (b)

Fig. 7. (a) A plot of v against WW. Note the flattened peak of the curve
resulting in minimal attenuation when the value of « is close to 1. (b) A
plot of -y against v"V. If the value of ~y deviates significantly from unity, it
is damped back to 1.

4.4 Progressive Refinement

As transient photons are cast and absorbed throughout the scene,
the estimate of flux at each persistent photon and, in turn, the esti-
mates of v begin to converge. After casting a predetermined num-
ber of transient photons, we calculate each photon’s flux-adjusted
bounding sphere, 7., (Equation 9), before relaxing the distribution
using Equation 12.

As with all Monte Carlo integrals, we observe that the error, €, in
the estimate of flux over each cell diminishes in proportion to the
inverse square root of the mean number of transient photons per
cell. Since #4 is a function of this estimate, the change in cell area
is a function of e. It is therefore computationally efficient to choose
the interval between relaxation iterations based upon a similar rela-
tion so as to reflect the continually decreasing gradient of the error.
For a given iteration, 4, at time 7}, the expected value of the error
obeys the following correspondence: E[e] o \% Hence, the next

iteration at time 7},, should occur once the mean residual error has
attenuated by a constant factor since 7;. This can be expressed as a
recurrence relation:

1
aT;,

13)

H,ﬂ

where « is the scaling parameter. We use a value of o = 50050 ~
1.1091. This yields approximately 60 iterations by 7" = 500 and
allows the distribution to adequately relax without incurring a pro-
hibitive computational overhead.

4.5 Detecting and Constraining Edge Cases

One drawback of using a sparse point cloud to encode B is that
the boundary of the set is poorly defined. In particular, the tran-
sition between zero and non-zero irradiance results in unbounded
Voronoi cells with infinite area. Since no real centroid of such a cell
exists, the relaxation operator experiences unchecked repulsion. We
illustrate this problem in Figure 8 where a group of persistent pho-
tons lies on the edge of a flux discontinuity. The cells shaded in
red in Figure 8b are infinitely large and this translates into poorly
estimated repulsion radii, as depicted in Figure 8c.

To avoid an unchecked increase in r, we capitalize on the prop-
erty that escaped photons’ 4 values increase monotonically once
they migrate into an area with a significantly low flux density. We
therefore specify a weighting function, WV, that tends to zero as ¥
grows large:

W(n) = exp(— 3 In(y(n))*) . (14)
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Flux boundary

(@ (b)

(d) ©

Fig. 8. The result of unchecked persistent photon migration. (a) Photons arrive with equal probability to the right of the flux boundary and zero probability
to the left. (b) The Voronoi cells of the photons shaded in red have infinite area because of their position near the boundary. (c) This translates to an over-
estimation of y from the k-nearest neighbors. (d) Relaxation repels the edge photons from their neighbors across the flux boundary. The error is compounded
at the next iteration with more photons becoming affected. (e) The repulsion radius computed from ~ (dotted outer circle) is attenuated using the weighting
function to arrive at the reduced radius +" (solid inner circle), thereby limiting unchecked migration.

A plot of this function is illustrated in Figure 7a. We raise the expo-
2
2y
around v = 1, flattening out the curve at its apex and preventing
unnecessary constraint to photons merely affected by noise. The
computed value of 4 is constrained by raising it to the power of
W, preventing escaped photons’ repulsion radii from growing ex-
ponentially large. This function is plotted in Figure 7b and its ef-
fect illustrated diagrammatically in Figure 8e. We also attenuate

the computed relaxation force f(n) (Equation 12) by its weight W.
This yields the following modified values for v and f:

nent to the 4** power in order to lower the second derivative

7/(n) = ()",
Fin) = W) f(n).
4.6 Modifying the Radiance Estimator

15)

The relaxation operator used by our approach approximates
Voronoi cell area, ry, using a density estimation kernel and is
thereby prone to a form of proximity bias. This error translates to
a mis-estimation of cell area and prevents Voronoi cells from pre-
cisely adhering to the flux capacity constraint in Equation 3. The
effect is highlighted in Figure 5 where a sample PDF is used to
stochastically seed a persistent photon dataset. As the distribution
is relaxed, the color encoding reveals that values of 4 in regions
where the illumination gradient is non-zero do not converge to 1.
This is due to each Voronoi cell’s area being affected by the residual
diffusion of the distribution in its local neighborhood.

By using the accumulated approximation of flux across each
photon’s Voronoi cell, the effects of proximity bias are effec-
tively counterbalanced. The original radiance estimate as defined
by Jensen must be modified accordingly:

L(z —

€1

Ky
1
mm; Fla.@ea,() Y ADm)| , (16)

meV (i)

where all notation corresponds to Equations 1 and 7.

5. RESULTS

All renders were carried out on an Intel Core i7 with 8GB of RAM
running Windows 7. We found that nearly all stages of our algo-
rithm were well-suited to vectorization and so used a total of 7
threads over 4 cores with 1 additional manager thread. Ray casting,
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transient photon merging and persistent photon relaxation were all
successfully load balanced and we found that increasing the num-
ber of threads from 1 upward scaled well and left comparatively
few processing bottlenecks.

5.1 Comparative Algorithms

Progressive photon relaxation (PPR) is a hybrid approach that uses
a persistent point dataset refined through progressive integration.
As such, it exhibits a memory bound proportional to Jensen’s origi-
nal photon mapping method and a runtime in the order of unbiased
Monte Carlo methods. In order to draw objective comparisons, we
compare our approach against both classic photon mapping (PM)
[Jensen 2001] and progressive photon mapping (PPM) [Hachisuka
et al. 2008].

Classic photon mapping forms the framework upon which our
approach is based and is homologous to an unrefined and un-
relaxed, persistent photon map. Hence, it represents an equal-
memory test case. In all examples, images are rendered using 20-
nearest neighboring photons to ensure comparable levels of kernel
bias. An isotropic Epanechnikov filter [Silverman 1986] is used to
minimize kernel bias. Where appropriate, we also test against pho-
ton relaxation [Spencer and Jones 2009]. Like photon mapping,
this method uses approximately the same amount of memory but
requires a short preprocessing step proportional to the number of
persistent photons.

Progressive photon mapping has been implemented according to
the default parameters supplied by Hachisuka et al. [2008]. The ini-
tial radius of each radiance estimate is based on the pixel footprint
derived from the distance to its neighboring hit points. The run-
times of both PPM and PPR are of the order O(n) for n transient
photons, so we draw an equal-time comparison by referring to the
total number of photons cast. We chose progressive photon map-
ping over unbiased Monte Carlo methods due to its robustness at
handling reflections and transmissions of caustics. Our implemen-
tation does not use the stochastic sampling algorithm described in
Hachisuka and Jensen [2009], so images rendered using PPM are
not anti-aliased.

In Table I we supply timings for all test scenes. These comprise
photon propagation (applicable to both PPR and PPM) and image
render time (applicable only to our approach). We also list the num-
ber of persistent photons, | N |, and the sample density, T". Note here
that the render time of Figure 4 is significantly lower because no di-
rect lighting computations were necessary in this scene.
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Fig.9. Measured difference in pixel intensity over time for the Torus Cube
scene in Figure 12.

5.2 Convergence Tests

To visualize the convergence properties of our approach we plot
the change in pixel intensity over a selection of 3 sample points as
progressively more transient photons are cast. For this test, we use
the Torus scene from Figure 12. As a reference, we use a converged
image rendered using progressive photon mapping. The results are
illustrated in Figure 9.

We observe that, unlike progressive photon mapping, the asymp-
tote around which each pixel converges in Figure 9a may not be
that of the reference. This is because the measured error of L is
the sum of both the sampling noise in the Monte Carlo estimates of
A®,, and the bias from the kernel itself. Since the number of pho-
tons used in the reconstruction of L remains constant, estimator
bias does not diminish asymptotically to zero. However, as demon-
strated by the rendered examples in Section 5.3, visual noise is still
successfully removed while the residual effects of bias are mini-
mized through the use of low-bandwidth kernels.

5.3 Test Scenes

In Figure 1, a bright light is shone through a glass vase contain-
ing recently disturbed water. This scene demonstrates the ability
of our algorithm to optimize high-frequency caustics without dif-
fusing away detail. Our progressive approach preserves intricate
details caused by the turbulent nature of the water’s surface.

Figure 4 is designed to demonstrate caustics generated by mate-
rials with different scattering properties. A glass prism is split into
two pieces, one rendered with a glossy isotropic Ward material, the
other a perfect specular BRDF. Approximately 220,000 persistent
photons are stored and refined with an additional 88,000,000 tran-
sient photons. Note how the fine striations caused by imperfections
in the glass surface are visible after progressive refinement. In the
unrelaxed comparison (Figure 4a), noise results in these details be-
coming lost.

In Figure 10, the WinOSI global illumination test scene [Granz
2012] with modifications inspired by Hachisuka et al. [2008] offers
a further example of complex caustic illumination. Here, two small
area emitters have been placed inside specular reflective tubes forc-
ing photons to bounce multiple times before exiting through the
aperture in the base. Both a faceted and smooth, specular reflec-
tive sphere, and a dielectric ball further reflect and refract the pho-
tons. 700,000 persistent photons were relaxed using approximately
230,000,000 transient photons in the progressive image. In this
scene, the relaxed caustic photon map is also used to compute dif-
fuse interrefection, both for our method and PPM, via a final gather
pass. This scene also reveals that residual bias cannot be altogether
eliminated by our approach, despite using a low-bandwidth radi-
ance estimate. Examples of this error can be observed at the base
of the walls and around other illumination discontinuities.
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Figure 11 depicts a triangular glass prism mounted below
a curved, reflective strip. Coherent white light is dispersed by
the prism before being repeatedly reflected and finally absorbed.
500,000 persistent photons are stored and 20-nearest neighbors
used in the radiance estimate. Our algorithm was run to 1,000
passes making a total of 500,000,000 accumulated photons. We
also compare the performance of our method against three other
algorithms. Standard photon mapping (Figure 11a) is tested using
a map containing 5,000,000 photons with 200-nearest neighbors
in the radiance estimate. This example emphasizes the argument
made in Section 3.2 that increased physical storage of photons (in
this case, one order of magnitude more) is not a practical means of
removing noise. Photon relaxation (Figure 11b) reduces noise but
severely degrades fine detail due to the failure of the feature de-
tection algorithm to capture and preserve the fine caustic filaments.
We also test against a map that has been allowed to converge with-
out photon redistribution (Section 3.2). The mottling effect demon-
strated in Figure 4c is also clearly visible.

Figure 12 is inspired by the caustic test scene devised by Cline et
al. [2005]. A diffuse torus is suspended in a transparent dielectric
cube which, in turn, is suspended in mid-air. The persistent photon
map contains approximately 500,000 photons with our progressive
relaxation method integrating a further 500,000,000 transient pho-
tons to remove noise. We also compare our approach with progres-
sive photon mapping using the same number of transient photons
for both tests. An analysis of the convergence rates at selected sam-
ple points in this scene is given in Figure 9.

Fig. 1 Fig. 4 Fig. 11 | Fig. 10 | Fig. 12
Resolution 548 x | 640 x | 640 x | 640 x | 800 x
470 640 750 480 800
|N| 500k 220k 500k 700k 500k
T 20 500 1000 350 1000
PPR/PPM t 6m 25m 27m 45m 1h 35m
PPR rendert | 1m 58s Im21s | Om 8s 1m 23s 1m 18s

Table I. Render statistics for included figures. PPR/PPM t indicates the time
taken to cast transient photons and construct both the progressive photon
map and relaxed photon map scene in each example. PPR render t is the
approximate time required to re-render the scene using progressive photon
relaxation from an arbitrary viewpoint. For progressive photon mapping,
this time would be approximately equal to PPR/PPM t at every frame.

6. DISCUSSION

The original photon mapping method is known to be susceptible
both to bias from the density estimation kernel and to noise due
to discrepancy in the underlying distribution. These artifacts are
particularly detrimental when caustics form the dominating compo-
nent of global illumination. Noise removal either incurs a geometric
increase in storage overhead, or results in loss of detail and blurring
due to kernel bias. Our technique avoids these penalties by opti-
mizing the underlying particle distribution. This strategy improves
rendering quality while avoiding an increase in the stored num-
ber of photons. As shown by the results in Section 5, it is possible
to obtain images of similar fidelity to unbiased or asymptotically
consistent methods while retaining the flexibility to reconstruct an
image from an arbitrary viewpoint.

While evaluating the applications of our progressive method, we
found it useful to consider potential application areas. Architectural
scenes and product designs would see a significant benefit since
in these scenarios the photon map is often static. With thousands
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Standard photon mapping [Jensen 2001].
700k photons.

Progressive photon relaxation.
700k persistent photons. 245M transient photons.

Progressive photon mapping [Hachisuka et al. 2008].
245M transient photons.

Fig. 10. The WinOSI global illumination test scene [Granz 2012] with
modifications similar to those made by Hachisuka et al. [2008].

of rendered frames, the one-off preprocessing cost of progressive
photon relaxation is low compared to the potential overhead of re-
generating a new photon map at every frame. An additional benefit
of our method is its construction on top of the basic photon map-
ping framework established by Jensen [2001]. If the infrastructure
for photon tracing already exists (either using the CPU or GPU),
our algorithm can bolt on to existing software.

7. FUTURE WORK

We have identified several promising avenues of further research
into improving both the efficiency and versatility of progressive
photon relaxation.
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For materials with non-Lambertian BRDFs, variance in the
sparse encoding of incident illumination by the photon map intro-
duces noise which is not completely eliminated by our technique.
Increasing the bandwidth of Lto compensate is problematic for the
reasons discussed in Section 3.2. A possible solution would be to
construct an estimator that takes advantage of the de-noised distri-
bution to differentiate between bias in radiance and irradiance. This
would make PPR more flexible over a broader range of materials.

Further analysis could also be made into how the change in
Voronoi cell area affects the estimate, 4. As demonstrated empir-
ically in Figure 9a, variance introduced by cell fluctuation dimin-
ishes as the distribution converges. However, quantification of this
error would allow for its compensation and could improve the speed
of convergence.

Another area of interest is the initial density of the persistent
photon map. Currently, this is based upon the same criteria as con-
ventional photon maps. A heuristic that selects photon density au-
tomatically, perhaps based upon a statistical analysis of the scene,
would be advantageous. Comprehensive analysis of the conver-
gence rate of our approach would also aid in this goal.

Investigation into Schjgth et al’s [2007] adaptation of the ray
differentials framework could improve the performance of pro-
gressive photon relaxation when rendering complex specular caus-
tics. In particular, instances where ray footprints become highly
anisotropic would likely benefit from this technique.

8. CONCLUSION

In this paper we have presented a novel approach to photon map-
ping using point relaxation and progressive refinement to optimize
the persistent photon distribution. We have demonstrated the ad-
vantages of preserving flux homogeneity by generating noise-free
renders of intricate caustics using very low-bandwidth kernels. We
have also shown that complex illumination effects such as spectral
dispersion can be effectively integrated. We highlight the key bene-
fits of progressive photon relaxation as view-independence, robust
noise removal, low memory overhead, suitability to vectorization,
compatibility with existing photon mapping implementations and
broad scope for expansion.
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