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ABSTRACT

In this paper, we propose a clustering approach embedded in a
deep convolutional auto-encoder (DCAE). In contrast to con-
ventional clustering approaches, our method simultaneously
learns feature representations and cluster assignments through
DCAEs. DCAEs have been effective in image processing
as it fully utilizes the properties of convolutional neural net-
works. Our method consists of clustering and reconstruction
objective functions. All data points are assigned to their new
corresponding cluster centers during the optimization, after
that, clustering centers are iteratively updated to obtain a sta-
ble performance of clustering. The experimental results on
the MNIST dataset show that the proposed method substan-
tially outperforms deep clustering models in term of cluster-
ing quality.

Index Terms— Deep Learning, Deep Convolutional
Auto-Encoder, Embedded Clustering.

1. INTRODUCTION

Clustering is an unsupervised machine learning approach. It
aims to group a set of unlabelled data based on homogeneous
patterns in a given feature space. Traditional clustering al-
gorithms attain a limited performance as the dimensionality
goes higher. Dealing with high-level representation provides
beneficial components, benefiting the achievement of such a
clustering task. As there is no supervising knowledge to pro-
vide information about categories labels, representative fea-
tures with compact clusters are much more beneficial. Deep
auto-encoders (DAEs) and deep convolutional auto-encoders
(DCAEs) are unsupervised models for representation learn-
ing. They map inputs into a new representation space, allow-
ing one to obtain useful features through the encoding proce-
dure. The data is projected into a set of feature spaces, using
the encoding part, from which the decoding part reconstructs
the original data. The training is performed in an unsuper-
vised manner by minimizing the differences between original
data and reconstructed data with distance metrics. The ma-
jor difference between a DAE and a DCAE is that the for-
mer adopts fully-connected layers to reconstruct the signal
globally while the latter utilizes local information to achieve
the same objective. DCAEs can benefit from a local model.
These methods have been exploited for the purpose of cluster-

ing, where features learned through deep networks (e.g. AE
or CAE) provide an abstracted latent representation which is
used for clustering analysis. Existing works can be classified
into four categories summarized in Table 1. Huang et al. [2]

Method Separated Clustering Embedded Clustering
AE Tian [1], Huang [2] Song [3], Xie [4]

CAE Li et al. [5] Guo et al. [6]

Table 1. Deep Clustering Methods

and Tian et. al [1] used AEs to learn a lower dimensional rep-
resentation space, to obtain effective features used for clus-
tering; thereafter, K-means is applied to cluster the obtained
features. Lia at el. [5] utilizes the CAE to learn representa-
tion, thereafter, the decoder part is neglected and a soft K-
means model is added on top of the encoder to make a unified
clustering model. Even though such a scheme takes advan-
tages of a deep neural network to map the original data into a
representative feature space followed by clustering analysis,
feature space learning and clustering are two separate proce-
dures, the objectives of which are not optimized jointly. Song
et al. [3] and Xie et al. [4] embedded a clustering objective
into an AE framework, while Guo et al. [6] recently propose
clustering with a CAE. Developing an embedded clustering
approach in a deep network allows extracting latent features
and clustering assignments simultaneously. This scheme usu-
ally leads to a more compact latent feature space.

In this paper, we present a clustering approach embedded
into a DCAE framework which aims to learn feature repre-
sentation and cluster assignment simultaneously. In contrast
to conventional clustering approaches, our method makes use
of representation learning with deep neural networks, which
helps to find compact and representative latent feature spaces
for further recognition tasks. Most of existing methods funda-
mentally rely on pre-training the parameters, using different
settings, while we train our model in an end-to-end way with
fixed settings without any pre-training or fine-tuning proce-
dures, enabling a faster training process. In contrast to Guo
et al.’s work, our proposed method differs in several key re-
spects. First, for the clustering approach, instead of clustering
with KL divergence, we apply an objective function that re-
stricts the distance between learned feature representations, in
a latent space, and their identical centroids, producing a stable



representation, which is appropriate for clustering process.
Accordingly, the centroids are iteratively updated. Second,
our work differs particularly in terms of architecture, cost
functions, and optimization. Finally, our results show that our
model yields a substantially better performance for both re-
construction and clustering quality. We evaluate our proposed
model on the MNIST data-set and compare our method with
three baselines, showing that our method substantially outper-
forms others in both reconstruction and clustering quality.

2. METHOD

The proposed approach embeds K-means clustering algo-
rithm into a DCAE framework which is trained in a fully
unsupervised manner. The architecture is shown in Fig. 1.
It consists of two objective functions, one minimizes the
distance between feature representations and their identical
cluster centers, and another minimizes the reconstruction
error. The two objectives are simultaneously optimized.

2.1. Deep Convolutional Auto-encoder (DCAE)

In contrast to a DAE model, the DCAE [7] uses convolutional
and deconvolutional layers instead of fully connected layers.
DCAE can be better appropriate in image-processing tasks
because it takes advantage of the properties of a convolutional
neural network (CNN) [8]. Local connections and parameter
sharing distinguish the CNN to have a property in translation
latent features [9]. In the encoding part, convolutional layers
are used, as feature extractors, to learn features through map-
ping the data into an internal layer. A latent representation
of the nth feature map of the existing layer is given by the
following form:

hn = σ(x ∗Wn + bn) (1)

where W are the filters and b is the corresponding bias of the
nth feature map, σ is the activation function (e.g. sigmoid,
ReLU), and ∗ denotes the 2D convolution operation.

In contrast, the deconvolutional layers invert this process
and reconstruct the latent representation back to its original
shape, so this process maps the obtained features into pixels
[10] by using the following form:

yn = σ(
∑
n∈H

hn ∗ W̃n + c) (2)

where H denotes the group of latent feature maps, W̃ is the
flip operation over both dimensions of the weights, c is the
corresponding bias, σ is the activation function, and ∗ denotes
the 2D convolution operation.

The DCAE extracts latent representations through its in-
ternal layer by minimizing the reconstruction error. We use
the cross-entropy (logistic) loss via Eq.(3) because experi-
ments have shown that the Euclidean (L2) loss function is not

robust to convolutional neural networks designed with decon-
volutional layers, and networks trained with perceptual loss
tend to produce much better results [11–13]. In a like manner
of standard networks, the backpropagation method computes
the gradient of the error with respect to all parameters.

E1 = − 1

N

N∑
n=1

(yn log ŷn + (1− yn) log(1− ŷn)) (3)

Where ŷ is the pixel value of the reconstructed image, and y is
the pixel value of the target image. For further detail of CAE,
readers can refer to [7].

2.2. Clustering Embedded on Deep Convolutional Auto-
encoder

Using the DCAE model described in Section 2.1, we now uti-
lize its strength as a training procedure for feature transfor-
mations. The goal of our clustering model is to learn fea-
ture representations and cluster assignments simultaneously.
Using the DCAE, as feature-extractor, supports the achieve-
ment of such a clustering process. This idea allows cluster-
ing method to deal with learned features instead of raw data.
We follow [3] by developing a deep clustering model, but in-
stead of a classic AE, we apply the DCAE to the clustering
task. Although DCAE provides an effective representation in
a new latent space, it does not internally impose compact rep-
resentation constraints using clustering. Therefore, we add a
clustering objective function to the DCAE framework, which
minimizes the distance between data samples and assigned
centroids in latent space as follows [3]:

E2 = λ · 1

2N

N∑
n=1

‖ ht(xn)− c∗n ‖2 (4)

where N denotes the number of samples, λ is clustering
weight-parameter that control the contribution percentage
of clustering cost function in the overall cost function (5),
ht(∗) is the internal representation obtained by the encoder
mapping at the tth iteration, (xn) is the nth sample in the
dataset, and c∗n is the assigned cluster center to the nth sam-
ple. The overall cost function is a combination of two parts:
the first part is essentially the cross-entropy loss minimizing
the reconstruction error, while the second part is cluster-
ing objective function minimizing the distance between data
representations in the latent space and their corresponding
cluster centers.

min
W,b

E1 + E2 (5)

2.3. Optimization

At each epoch, our model optimizes two components using
stochastic gradient descent and backpropagation: (1) CAE



parameters as well as a mapping function h, and (2) cluster
centers c. At each epoch, the model optimizes the mapping
function h, while keeps the cluster centers fixed at c. There-
after, each obtained new internal representation is assigned to
the closest centroid. Following [3], this is defined as:

c∗n = argmin
ct−1
m

‖ ht(xn)− ct−1m ‖2 (6)

where ct−1m denotes the cluster centers computed at the pre-
vious epoch. After each internal representation is assigned to
the closest cluster center, the cluster center is updated using
the sample assignment computed in the previous epoch via
the following equation as [3]:

ctm =

∑
xn∈ct−1

m
ht(xn)∑

ct−1m

(7)

where ct−1m is all samples that belong to the mth cluster at
the previous epoch, and

∑
ct−1m is the number of samples that

belong to the mth cluster.

2.4. Architecture

We adopt the base architecture proposed in [14]. Our exten-
sion to the architecture are the following. Firstly, instead of
two loss functions (cross-entropy loss and Euclidean loss) to
minimize the reconstruction error, we only use cross-entropy
loss, as previous studies have shown that the Euclidean loss
function is not robust to convolutional neural networks de-
signed with deconvolutional layers [11–13]. Also with only
the cross-entropy loss, our experiments have shown that only
cross-entropy reconstruction loss can provide good training
convergence. Secondly, we exploit the learned features via
the internal layer and feed it to clustering loss which mini-
mizing the distance between data points and their assigned
cluster centers, embedding clustering techniques in a DCAE
framework. Thirdly, instead of optimizing the CAE to reach
optimal reconstruction, we sequentially optimize the mapping
function h and cluster centers to obtain efficient clustering re-
sults. The final architecture of our model for deep clustering
embedded in DCAE is presented in Fig. 1.

The network architecture consists of two convolutional
layers with filter sizes of 9 × 9 with 8 kernels in the first
convolutional layer and 4 kernels in the second convolutional
layer. This followed by two fully-connected layers, which
have 250 neurons and 10 neurons respectively, in the encod-
ing part. In the decoding part, a single fully-connected layer
of 250 neurons followed by two deconvolutional layers. The
first deconvolutional layer consists of 4 kernels with the size
of 12 × 12, and the second deconvolutional layer consists of
4 kernels with the size of 17× 17. As an activation function,
a standard sigmoid activation function is utilized.

Fig. 1. The architecture of our proposed model.

3. EXPERIMENT AND DISCUSSION

The proposed method was implemented using MatCon-
vNet [15] and evaluated on MNIST dataset. The model
was trained end-to-end in an unsupervised manner. There
is no pre-training and fine-tuning procedures involved. All
weights were initialized using Xavier method [16] and biases
were initialized to 0, and the cluster centers are initialized
randomly. Stochastic gradient descent was used where each
batch contains 100 random shuffled images. An initial learn-
ing rate of 0.006 with a momentum of 0.9 and weight decay of
0.0005 was used. We set λ, the clustering weight-parameter
that controls the loss contribution percentage of clustering
error, to 0.2, and the model converged after 500 epochs.

The CAE is trained to transform the data into latent rep-
resentation and then reconstruct the original input or obtain
an optimal approximation of the underlying data representa-
tion by minimizing the reconstruction error. Some examples
of original inputs and reconstruction images obtained by our
model are demonstrated in Fig. 3, allowing to visually differ-
entiate and evaluate the reconstruction quality of the proposed
model. In Fig. 3, the reconstructed images (bottom row) look
qualitatively identical to original ones (top row) with certain
levels of blurring, which helps to capture common patterns in-
stead of subtle details at local regions for reconstruction. It is
noteworthy that due to such smoothness the digit 5 has a sim-
ilar structure to the digit 6. One reasonable explanation is that
the proposed method is designed for unsupervised represen-
tation learning with a signal reconstruction objective, where
such supervision information, e.g. differentiating 5 and 6, are
not available to aid the learning of discriminative features.

To evaluate the cluster quality, two evaluation metrics,
accuracy (ACC) and normalized mutual information (NMI)
were computed. We compared our method with three baseline
methods: DEC [4], AEC [3] and DCEC [6]. The results are
summarized in Table 2. Our proposed method outperforms
the baseline methods by a significant margin on both ACC
and NMI metrics, where 84.97% and 92.14% were achieved
respectively. The proposed method substantially outperforms
second place by 6.85 percentage points which also uses CAE



Fig. 2. Visualizations of latent representation on the MNIST testing set. Left: CAE without clustering loss; Middle: CAE with
clustering; Right: Ground-Truth.

Fig. 3. Visualizations of input and reconstruction images with
respect to digits 0, 3, 5 and 9

approach with jointed clustering loss. Fig. 4 shows both the
changes of ACC and NMI with the number of training cycles,
which clearly indicates that clustering stably converges using
an iterative training scheme.

NMI ACC
Xie et. al [4], DEC - 84.30%

Song et. al [3], AEC 66.90% 76.00%
Guo et. al [6], DCEC - 85.29%

Proposed 84.97% 92.14%

Table 2. Comparison of clustering quality with baselines.

In addition, we carried out visual assessment where the t-
SNE visualization method [17] was applied to evaluate clus-
tering results of the proposed method. Fig. 2 shows a 2D pro-
jection of the latent representation of our proposed method,
where the clustering results are visualized with color coding
using ground truth label. It shows that with jointed clus-
tering loss, the learned latent representation space has more

compact structures forming significant clusters which have
a better matching with true labels. With jointed clustering
loss (Fig. 2, Right), the learned features have larger inter-
cluster distances and tighter structures (see the clusters la-
belled with green, magenta, and dark-blue colors) compared
to the method using no clustering constraint (Fig. 2, Left).

Fig. 4. Changing of accuracy and NMI during training on
MNIST

4. CONCLUSION

In this paper, we introduce an unsupervised deep clustering
method where a non-linear latent representation and compact
clusters are learned jointly. The experimental results have
demonstrated the effectiveness of our method to cluster data
into appropriate groups. There is a potential for numerous
image-processing applications such as representation learn-
ing for image classification. Our potential future work is to
experiment with more difficult datasets and improve the ac-
curacy of such deep clustering models.
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