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Abstract
In Full-Reference Image Quality Assessment (FR-IQA) images are compared with ground truth images that are known to be
of high visual quality. These metrics are utilized in order to rank algorithms under test on their image quality performance.
Throughout the progress of Monte Carlo rendering processes we often wish to determine whether images being rendered are of
sufficient visual quality, without the availability of a ground truth image. In such cases FR-IQA metrics are not applicable and
we instead must utilise No-Reference Image Quality Assessment (NR-IQA) measures to make predictions about the perceived
quality of unconverged images. In this work we propose a deep learning approach to NR-IQA, trained specifically on noise
from Monte Carlo rendering processes, which significantly outperforms existing NR-IQA methods and can produce quality
predictions consistent with FR-IQA measures that have access to ground truth images.

CCS Concepts
•Computing methodologies → Machine learning; Neural networks; Computer graphics; Image processing;

1. Introduction

Monte Carlo (MC) light transport simulations are capable of mod-
elling the complex interactions of light with a wide range of phys-
ically based materials, participating media, and camera models to
synthesize images that are indistinguishable from photographs. The
trade-off for producing images with high visual fidelity is slow
computation times as MC based rendering algorithms are only
guaranteed to converge in the limit, as the number of samples ap-
proaches infinity. Early termination of the rendering process can
leave an undesirable amount of visual distortions in the form of spa-
tially varying impulse noise, and missing illumination from com-
plex interactions such as caustic and indirect illumination due to
under-sampling when few samples are considered in the image es-
timate.

When comparing the performance and visual quality of images
produced by Monte Carlo rendering processes, a commonly ac-
cepted methodology is to render a reference image to a large num-
ber of samples to ensure that the reference has high visual qual-
ity. This reference image is then assumed to be representative of
the ground truth image and can be used experimentally to com-
pare images rendered by competing algorithms under test, either
in an equal time or equal quality benchmark. To compare images
to the reference image, FR-IQA methods such as MAE, MSE,
SSIM [WBSS04], or more recently MS-SSIM [WSB03], HDR-
VDP-2 [MKRH11], or SC-QI [BK16] can be used to evaluate the
relative quality of test images. Outside of algorithm benchmark-
ing, the ground truth image is often not available as access to the

ground truth would preclude the need to perform additional ren-
dering of the image. In such cases NR-IQA measures allow us to
predict the perceived quality of images by modelling the distribu-
tion of naturally occurring distortions that are present in images
before convergence of the rendering process has been achieved.

In this work we present a deep learning approach to NR-IQA,
specifically aimed at evaluating distortions found in unconverged
MC rendered images. We show that a convolutional neural network
architecture is capable of modelling the spatially varying nature of
natural image distortions that arise from under-sampling of com-
plex light transport simulations and that predictions made by the
model can approach; within a high degree of accuracy, to FR-IQA
methods that have access to ground truth images. Our model is de-
signed to estimate image quality blindly by comparing features ex-
tracted from the local region around each pixel in an unconverged
input image to the distribution of those features which occur natu-
rally in clean images from the target domain. This representation is
learned by dense regression from a corpus of images corrupted with
varying magnitudes of distortion. The regression target for a given
noisy image is a per-pixel quality map computed using a robust FR-
IQA measure [WJM17] operating on an unconverged image and its
associated ground truth image.

2. Image Quality Assessment

In image processing tasks IQA aims to measure the quality or simi-
larity of images. In FR-IQA, algorithms have access to a potentially
distorted test image and a ground truth image which is known to be
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correct and distortion free. The algorithm is tasked with evaluating
the similarity between the distorted and true images. The meaning
of “similarity” can vary between algorithms; ranging from simple
definitions of geometric distance, to complex models of the Human
Visual System (HVS) and perceived distortion. In contrast, NR-
IQA algorithms are tasked with approximating the quality of a test
image without outside input on what the true image should look
like. In this formulation, image “quality” is predicted by compar-
ing the distorted test image to a learned distribution over the types
of distortion we expect to see during inference.

NR-IQA measures are often trained and validated on distorted
images sampled from publicly available datasets such as: Live
[SWCB14], TID2008 [PLZ∗09], TID2013 [PIL∗13], Kodak Loss-
less True Colour [Fra99], MICT [HSKS11], and IRCCyN/IVC
[AB09]. These datasets contain natural images (photographs) cov-
ering a wide range of scene compositions and subject matters along
with synthetically distorted copies, coupled with subjective quality
scores pooled over a set of human observers from a controlled user
studies.

Measures based on Natural Scene Statistics (NSS) attempt to
model the distribution of perceived distortions present within a
population of images from a given distortion domain [SBC05,
MMB12]. Inference is performed by comparing the statistics ex-
tracted from test images to those learned from the population of
training images containing the same types of distortion. These
measures use hand-crafted features for modelling NSS and are fit
against subjective quality scores to minimize the prediction error.
Hand-crafted NSS features designed to directly correlate with per-
ceived image quality allow for the creation of “completely blind”
NR-IQA measures which do not need to be fit against subjective
quality scores [KGBE16].

The synthetic distortions considered attempt to approximate
those that can occur naturally during image compression, trans-
mission, and synthesis [KB15]. Examples of the synthetic distor-
tions used are: Additive Gaussian Noise, Gaussian Blur, JPEG-
2000 Compression, JPEG Compression, Blockiness, Fast Fading,
Sub-band Truncation, and Ringing Artefacts. We find that in many
cases synthetic distortions such as these do not provide a repre-
sentative target for training and evaluating metrics that will be ap-
plied to naturally distorted images such as those generated through
MC rendering processes. Thus, in this work we propose a model
trained directly on domain images containing naturally occurring
distortions from unconverged MC rendering processes.

2.1. Image Quality Assessment in Monte Carlo Rendering

In MC light transport simulations each MC sample represents the
energy contributed by an individual photon or the flow of energy
through a region of path-space [Kaj86]. Such methods approximate
an integral to create an image by averaging over many discrete sam-
ples and as such no one sample is representative of the integral’s
final expectation. Only in the limit, as the number of samples goes
to infinity will the error of the approximation go to zero, and the
average of the samples converge to the expectation of the integral.

When a finite number of samples are used the approximate im-
age will naturally contain a certain amount of error compared to

the ground truth image. It is a commonly accepted methodology
when benchmarking MC rendering algorithms to produce an im-
age using a large number of samples to ensure it will have high
visual fidelity, and to use this image as a ground truth with which
to compare images generated by competing algorithms in either
an equal time or computation comparison using a well established
FR-IQA measure. In this formulation the ground truth image can
still potentially contain distortions as it is also the product of an
integral approximated using a finite number of samples. Measures
such as MS-SSIM [WSB03] and SC-QI [BK16] therefore make
good choices for the FR-IQA method as they are robust to distor-
tions in reference images [WJM17].

Without access to the ground truth image NR-IQA techniques
can be used to halt the rendering process when an image is pre-
dicted to have reached an acceptable quality. Iterative methods
have been proposed that evaluate changes between images as sam-
ples are computed progressively [Mys98, BM98]. Image change
is measured by re-purposing perceptually weighted FR-IQA mea-
sures such as Visual Difference Predictor (VDP) [Dal93] and Vi-
sual Discrimination Model (VDM) [Lub95]. Treating the current
image as the reference and prior images as the those under test,
samples are computed progressively until the change in perceptual
quality falls below a prescribed threshold. Such methods are lim-
ited in their applicability as the underlying FR-IQA are highly sus-
ceptible to distortions in reference images, and the computational
expense of computing the perceptual measures often outweighs the
performance gains from early halting.

Perceptually aware NR-IQA measures can also be used to com-
pute an initial sample density map based on direct illumination and
an ambient lighting approximation [RPG99]. This is used to pro-
gressively direct a computational budget during the computation of
indirect illumination. As the render progresses, the sample density
map is updated periodically by comparing the current rendering
solution to the one from the previous iteration. Similar schemes
have been applied to animated sequences along predefined cam-
era paths, allowing for the sparse computation of high quality key-
frames with Image Based Rendering (IBR) [KS00] used to synthe-
size intermediate frames [MRT00]. A temporally aware extension
of VDP, termed Animation Quality Metric (AQM), is used to de-
termine whether the IBR interpolated images are of sufficient vi-
sual quality for use in the animated sequence. When they are found
not to be of sufficient quality, a new key-frame is recursively com-
puted between the two existing ones and the surrounding frames
are re-interpolated through IBR. This process continues until the
entire sequence has been generated to a sufficient visual quality.
Later methods aim to improve the performance of rendering such
animated sequences by using a computationally inexpensive render
pass without global illumination to approximate where viewer at-
tention is focused throughout the sequence [YPG01]. This can be
used to direct more computation into regions predicted to have high
visual importance, yielding improved perceptual quality in the final
global illumination pass while using a significantly reduced number
of samples.

NR-IQA methods have been designed to model visual sensitivity
to domain distortions from biased rendering techniques [HČA∗12]
such as Virtual Point Lights [Kel97] and shadow map discretisa-
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tion. Our method builds on this intuition by developing an NR-IQA
which models the effect of domain distortions with specific focus
on unbiased MC rendering algorithms.

2.2. Machine Learning in No-Reference Image Quality
Assessment

NR-IQA methods often include model parameters that need to be
optimized for the image and distortion domains that will be targeted
at inference time. Early methods relied heavily on the use of hand-
crafted features to extract meaningful statistics about images and
Support Vector Regression (SVR) to infer quality scores for im-
age patches. More recently, General Regression Neural Networks
(GRNN) were used to predict the subjective quality scores of natu-
ral image patches under synthetic distortion from the Live database
[LBW11]. The robustness of this method was later improved upon
using AdaBoosting [LHZ∗16] and further so by the application of
Convolutional Neural Networks (CNN) [BMWS16, BMM∗16].

The NR-IQA problem is closely related to the problem of blind
image denoising, where we wish to recover a clean image from a
corrupted one. Intuitively, if we could perfectly identify noise in a
distorted image, then subtracting the distortion map would result in
a perfectly denoised image. Similarly, if a perfectly denoised image
could be extracted from a distorted one, then the difference map
would perfectly capture the distortion at each pixel. In this way we
can see that there is a shared feature space relevant to both tasks.

Recent work has applied machine learning methods to the task
of blind image denoising in the context of MC rendered images
[KBS15]. Primary features extracted from the rendering pipeline
such as pixel-colour, world-space coordinates, shading normals,
texture albedo, and the direct illumination shadow-map are used
to compute a set of hand-crafted secondary features based on lo-
cal neighbourhood statistics. These features are fed independently
for each pixel to a Multi-Layer Perceptron (MLP) that predicts a
set of variances for each dimension of a cross-bilateral or non-local
means filtering of the rendered image. A limitation of such meth-
ods is cost of evaluating the MLP independently for the features
at each pixel. Later work improves upon this through the use of
a CNN architecture by directly regressing the residual error map
at each pixel [ZZC∗17]. This was demonstrated on natural images
distorted by additive Gaussian noise with a constant variance over
the entire image, where subtracting the predicted residual from the
input gives a denoised image.

CNN have also been applied to image de-raining, a denoising
task where natural images contain a naturally occurring distor-
tion, precluding the availability of “clean” reference images for
comparison. Such methods can be trained in a supervised fashion
through the use of natural images with rain synthetically added to
them [FHD∗17], or by posing the problem as an unsupervised im-
age to image translation task using a Generative Adversarial train-
ing scheme [ZSP17].

3. Our Method

Much of the work on machine learning based NR-IQA is de-
signed to evaluate fixed sized patches extracted from test images

[LBW11, LHZ∗16, BMWS16, BMM∗16]. For a 512× 512 image
using a stride of 1 pixel, this results in 262144 image patches
which need evaluation. Even when batch processing large numbers
of patches simultaneously this is prohibitively slow to compute.
Proposed methods usually adopt a scheme to mitigate this where
a fixed number of random patches are sampled from the image,
and their average predicted quality reported as the final NR-IQA
score. Due to the translational invariance of convolution, many of
the spatial locations between overlapping image patches recompute
the same feature activations in offset spatial locations.

One solution to this problem is to use a Fully-Convolutional
Neural Network (FCNN) architecture. This class of model was first
proposed for the task of dense image segmentation [LSD15] where
the goal is to perform multi-class classification on each individ-
ual pixel of an input image. In this work the authors took exist-
ing pre-trained models from AlexNet [KSH12], VGG [SZ14], and
GoogLeNet [SLJ∗14] and modified the final layers to make the net-
works fully-convolutional. Unlike a standard CNN which operate
on fixed sized inputs using a combination of pooling, strided and
dilated convolution, flattening, and dense layers to down-sample
and shape the output size; the output of an FCNN is only dependent
on the input size provided. During training, images of a fixed size
are grouped into mini-batches to accelerate and stabilize training,
while at inference time arbitrarily sized images can be fed to the
network individually or in batches of identically sized images. By
reusing the common feature map activations between neighbouring
spatial locations, such architectures allow for regression to be per-
formed densely at all spatial locations with a significantly reduced
computational cost.

For our NR-IQA model we use an FCNN architecture to densely
predict the the quality value from a robust FR-IQA measure while
only being shown the distorted input image. We chose SSIM
[WBSS04] as the target FR-IQA measure for regression as it is ef-
ficient to evaluate during model training and because it is known to
perform robustly for the types of distortion found in unconverged
MC rendered images [WJM17]. By default, SSIM uses an 11×11
pixel neighbourhood to gather local statistics on the means, vari-
ances, and covariance between the reference and test images. This
yields an SSIM map with the same resolution as the input images
which can be averaged to provide a robust scalar valued FR-IQA
measure. Given a noisy test image of an arbitrary resolution we
aim to predict the value of the SSIM map at each pixel without ac-
cess to the ground truth image. The predicted SSIM map can then
be mean pooled to provide a single value representing predicted
image quality or used directly as an indication of the magnitude of
distortion present at each spatial location.

We propose a feed-forward FCNN model with two phases. In the
first phase we extract image features from the local neighbourhood
around each pixel using a series of 3× 3 convolutions, expanding
the receptive field of the network to a final width of 11× 11 pix-
els over the course of 5 layers, where each layer has 256 feature
maps. In the second phase we apply a series of dense layers to each
pixel independently with shared weights at each layer. This forms a
non-linear recombination of the localized features extracted during
the first phase. These dense layers are implemented using a special
case of convolution with a kernel size of 1×1 and 128 output fea-
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ture maps. In this configuration, the value at each spatial location
in each of the output feature maps is formed by a weighted com-
bination of over the features in the same spatial location in each of
the feature maps from the preceding layer. For both phases, each
convolutional layer is followed immediately by batch normaliza-
tion [IS15] and ReLU activation. Lastly, we apply a single 1× 1
convolutional layer without batch normalization to reduce the 128
features down to a scalar valued quality score at each spatial lo-
cation. We initialize all convolutional kernels using He initializa-
tion [HZRS15] as we use ReLU activations throughout the model.
Figure 1 shows our proposed architecture.

Figure 1: Our fully-convolutional NR-IQA architecture consists of
a local feature extraction phase, and a non-linear recombination
phase.

3.1. Training

Our model was trained using a dataset of MC rendered im-
ages produced with the Mitsuba render [Jak10]. We rendered
four scenes (see figure 3) containing a range of lighting con-
ditions, colour pallets, and scene compositions using multiple
MC rendering algorithms; namely: PT [Kaj86], BDPT, [LW93,
Vea97], PSSMLT [KSKAC02], MLT [VG97], ERPT [CTE05], and
Manifold-MLT/ERPT [JM12]. Images were rendered to increasing
numbers of independent samples using each of the rendering al-
gorithms considered on a 2n s.p.p. sequence where 2 ≤ n ≤ 18.
Images were rendered in High Dynamic Range (HDR), then con-
verted to Low Dynamic Range (LDR) using Mitsuba’s Reinhard
Tone-Mapping operator [RSSF02]. The resulting LDR images were
stored as 24 bits-per-pixel RGB. For each scene we treat a single
high quality image as the ground truth used for FR-IQA during
training. The ground truth is taken as the highest sample count im-
age rendered with Path Tracing for the Cornell Box and Sponza
Atrium scenes, and Bidirectional Path Tracing for the Veach Bidir
and Veach Door scenes.

We trained using leave-one-scene-out cross validation whereby
the model is trained from random He initialization using each scene
in turn as the validation set while training on the remaining scenes.
At each training step we sample a random mini-batch of 64× 64
distorted RGB patches from the training set and compute the true
SSIM map yi = SSIMmap(xi,x′i) of the ith distorted image patch xi
compared to its ground truth patch x′i . The noisy patches are fed to
the network and the approximate SSIM map of the sampled noisy
patch ŷi = Q(xi,Θ) predicted by the network Q parametrized by
weights Θ. We then optimize all weights in Θ via gradient descent
using the Adam optimizer [KB14]. For each cross-validation fold

there are ∼ 70 million patches in the training set and ∼ 24 million
patches in the validation set.

For the loss function, we experimented with the MAE and MSE
losses before settling on the Charbonnier loss with ε = 10−3 (equa-
tion 1). The Charbonnier loss combines benefits of both MAE, as
its maximum gradient is 1, and MSE as the derivative transitions
smoothly from negative to positive at origin [Bar17]. These prop-
erties led to more stable regression training.

LC =
√
(y− ŷ)2 + ε2 (1)

In the context of an IQA metric a relevant measure of goodness-
of-fit is the Pearson’s Correlation Coefficient (PCC). Incorporating
this into the loss function we jointly minimize the average Charbon-
nier loss over a batch and the negative absolute batch-wise PCC as
shown in equation 2.

LJoint = δ(1−
∣∣PCC(y, ŷ)

∣∣)+ 1
N

N

∑
i=1
LC(yi, ŷi) (2)

The contribution of PCC to the joint loss is scaled up by δ to
balance its importance with the Charbonnier loss. Empirically, we
found a value of δ = 1 worked optimally when images were fed
to the network in the colour range [0,1]. Incorporating PCC into
the loss function had the effect of increasing accuracy and stability
during training.

An issue that we faced was that the network was prone to mem-
orization from the training set, hindering its ability to generalize
to patches from the hidden validation scene. To address this prob-
lem we used a data augmentation scheme employing a horizontal
flip with 50% probability, 90° rotations with 25% probability each,
and lastly a random perturbation in the HSV colour space. The
HSV augmentation applies a common hue, saturation, and bright-
ness shift to all pixels within a sampled patch and its associated
ground truth patch (equation 3); where the shifts are sampled inde-
pendently for every training example in the mini-batch. The ground
truth SSIM map used as the target for regression is calculated on-
the-fly after both the distorted and ground truth patches have been
randomly augmented. During validation batches no augmentation
is applied.

H,S,V = RGBtoHSV(R,G,B)

H′ = (H +ξH) mod 1

S′ = clip(S+ξS,0,1)

V ′ = clip(V +ξV ,0,1)

R′,G′,B′ = HSVtoRGB(H′,S′,V ′)

where ξH ∈U(0,1) and ξS,ξV ∈U(−0.3,0.3)

(3)

Figure 2 shows the effect of the above rotational and flip aug-
mentation in combination with the proposed HSV perturbations.
Image patches are sampled from the Veach Bidir scene of our
dataset. The top row shows image patches before augmentation,
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Validation Training (Rot+Flip+HSV Augmentation) Validation
Loss Scene PCC SROCC Tau PCC SROCC Tau

L1 Cornell Box 0.972193 0.973177 0.867047 0.982244 0.860295 0.700377
Veach Bidir 0.966749 0.968851 0.865146 0.978072 0.975443 0.888591
Veach Door 0.978891 0.969311 0.859785 0.944208 0.953709 0.835708

Sponza 0.977722 0.982417 0.897448 0.961138 0.961118 0.838531
µ±σ 0.9739±0.0056 0.9734±0.0063 0.8724±0.0170 0.9664±0.0174 0.9376±0.0523 0.8158±0.0807

L2 Cornell Box 0.975399 0.968849 0.855512 0.988992 0.858504 0.703183
Veach Bidir 0.974397 0.933385 0.792890 0.982448 0.958809 0.842332
Veach Door 0.979344 0.951626 0.822898 0.937276 0.933206 0.805445

Sponza 0.967688 0.947931 0.820128 0.956717 0.960155 0.828935
µ±σ 0.9742±0.0048 0.9504±0.0146 0.8229±0.0256 0.9664±0.0239 0.9277±0.0477 0.7950±0.0631

LC Cornell Box 0.965823 0.964170 0.846650 0.984243 0.896299 0.741704
Veach Bidir 0.964259 0.960643 0.846469 0.977131 0.981226 0.895550
Veach Door 0.975903 0.979250 0.887376 0.925470 0.931493 0.821929

Sponza 0.970519 0.962865 0.848396 0.957923 0.956690 0.825556
µ±σ 0.9691±0.0052 0.9667±0.0085 0.8572±0.0201 0.9612±0.0263 0.9414±0.0363 0.8212±0.0629

LJoint Cornell Box 0.974092 0.975930 0.874233 0.988965 0.954679 0.830864
Veach Bidir 0.973101 0.961212 0.840273 0.975710 0.972310 0.862354
Veach Door 0.979507 0.978489 0.883210 0.942559 0.950619 0.848439

Sponza 0.975069 0.968283 0.859585 0.964857 0.968420 0.850224
µ±σ 0.9754±0.0028 0.9710±0.0078 0.8643±0.0188 0.9680±0.0196 0.9615±0.0105 0.8480±0.0130

Table 1: Training and Validation set accuracies for patches after 128 epochs for leave one scene out cross validation using rotation, flip, and
HSV augmentations. The cross validation folds were computed for each of the four loss functions under test; for each of these configurations,
the mean and standard deviation in the reported correlations across the folds are reported in the bottom row of each section. The LC loss
shows only a minor improvement over the L2 and L1 losses; however, the LJoint loss shows significantly more consistent results and has
lower standard deviations over the cross validation folds.

with subsequent rows containing the patches after random augmen-
tation has been applied.

Figure 2: An example of the proposed data augmentation scheme
exhibiting rotations, flips, and HSV perturbations. The top row
shows image patches before augmentation, with subsequent rows
containing the patches after random augmentation has been ap-
plied.

Formally, we train for 1024 epochs consisting of 256 mini-
batches of 16 64× 64 RGB image patches in the range [0,1] ran-
domly sampled from the training scenes with random augmenta-
tion applied as described above. We train using the Adam opti-
mizer [KB14] with a base learning rate of 0.001. Training was
performed on a single NVidia GTX 1070 GPU and took approx-
imately 4 hours per cross validation fold. Each epoch represents
a random sampling with replacement from the training set where
the data augmentation scheme ensures that, should the same patch

be selected multiple times, it will be shown to the network under
different random augmentations.

4. Results

We report the accuracy of our model on patches from the training
and validation sets. Accuracy is calculated using the PCC, Spear-
man’s Rank Order Correlation Coefficient (SROCC), and Kendall’s
Tau between the expected and predicted quality values for each
patch in the training and validation sets for each cross validation
fold.

To highlight the importance of our joint loss function we initially
trained four models for 128 epochs each using MAE, MSE, Char-
bonnier, and our joint Charbonnier + PCC loss functions. Table 1
shows the result of training using each of the four loss functions.
On the validation sets, the joint loss achieves the highest average
accuracies of 0.9680±0.0196 in PCC, 0.9615±0.0105 in SROCC,
and 0.8480±0.0130 in Tau; and consistently have smaller standard
deviations than the other losses between cross validation folds.

While all four loss functions perform similarly when comparing
validation PCC values the difference between SROCC and Tau val-
ues are more pronounced. For these two measures, we see that the
joint loss provides better final accuracy on average by +0.0201 to
+0.0338 for SROCC and +0.0268 to +0.053 for Tau over the cross
validation folds, and has a lower standard deviation between folds.
This shows that the regularization properties of incorporating PCC
into the loss function are effective in improving training stability
and accuracy.

Selecting our joint loss as the best performing loss function we
continued training the model to 1024 epochs to improve the accu-
racy to effective convergence (table 2). Doing so only gave a mod-
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Validation Training (Rot+Flip+HSV Augmentation) Validation
Loss Scene PCC SROCC Tau PCC SROCC Tau

LJoint Cornell Box 0.974825 0.979942 0.887806 0.988769 0.963563 0.858154
Veach Bidir 0.978509 0.982749 0.894389 0.988179 0.983878 0.914428
Veach Door 0.982456 0.986308 0.909126 0.951672 0.957310 0.864841

Sponza 0.981203 0.986476 0.915918 0.958848 0.963735 0.842833
µ±σ 0.9792±0.0034 0.9839±0.0031 0.9018±0.0130 0.9719±0.0194 0.9671±0.0116 0.8701±0.0310

Table 2: Training and Validation set accuracies for patches after 1024 epochs for leave one scene out cross validation using the LJoint loss
and rotation, flip, and HSV augmentations.

Cornell Box Veach Bidir Veach Door Sponza
Metric PCC SROCC Tau PCC SROCC Tau PCC SROCC Tau PCC SROCC Tau

Ours 0.9996 0.9959 0.9688 0.9982 0.9921 0.9393 0.9928 0.9916 0.9331 0.9989 0.9964 0.9686
BLIINDS [SBC10] 0.9840 0.9858 0.9287 0.9619 0.9544 0.8650 0.9640 0.9870 0.9144 0.9066 0.9668 0.8723

BIQI [MB10] -0.2150 -0.0472 -0.0145 -0.0365 -0.3395 -0.2411 -0.7170 -0.3449 -0.2462 -0.4219 -0.5132 -0.3693
BRISQUE [MMB12] 0.3596 0.6854 0.5414 0.2211 0.3402 0.2172 0.1214 0.4154 0.3546 -0.5622 -0.3427 -0.2879

HIGRADE 1 [KGBE16] 0.2321 -0.1136 -0.0779 -0.7522 -0.6113 -0.4465 0.3415 -0.3348 -0.2901 0.2163 -0.0028 0.0246
HIGRADE 2 [KGBE16] 0.4008 0.4236 0.3167 -0.7526 -0.8591 -0.6761 0.4064 0.1528 0.1009 0.4042 0.2663 0.1867

JP2K-NR [SBC05] -0.3977 -0.9352 -0.8264 -0.5410 -0.9139 -0.7517 -0.0234 0.2408 0.1091 -0.6635 -0.8156 -0.6524
NIQE [MSB13] 0.6013 0.9490 0.8283 0.6573 0.8651 0.7089 -0.0037 0.4418 0.3581 -0.4974 -0.2841 -0.2371

OG-IQA [LHZ∗16] 0.2863 0.4868 0.3278 -0.2013 -0.1947 -0.1759 -0.5076 -0.2150 -0.1673 -0.7798 -0.6177 -0.4556

Table 3: Validation set full image NR-IQA performance for leave one scene out cross validation, compared to prior NR-IQA measures. Each
correlation is computed relative to FR-IQA of each 512×512 image in the validation set compared to its ground truth image.

est improvement in accuracy on the validation sets of +0.0039 in
PCC, +0.0056 in SROCC, and +0.0221 in Tau, showing that our
model can attain high accuracy robustly with only a small amount
of training.

Finally, in order to compare our proposed FR-IQA model to ex-
isting methods, we feed each 512× 512 image in the validation
sets to the network and apply average pooling to the resulting pre-
diction maps to give a single scalar valued quality score for each
image. Using the predicted values from our method, those from
the existing methods, and the ground truth quality scores com-
puted using the SSIM FR-IQA measure; we compute the correla-
tion of the predicted values compared to the FR-IQA values and
report these results for each validation scene, using the version
of our method trained on each cross validation fold, respectively.
The results of this analysis are shown in table 3. Our method con-
sistently achieves the highest correlation across all four validation
scenes, achieving average correlations of 0.9974 in PCC, 0.994 in
SROCC, and 0.9525 in Tau between cross validation folds. The
BRISQUE [MMB12], HIGRADE 1 & 2 [KGBE16], JP2K-NR
[SBC05], NIQE [MSB13], and OG-IQA [LHZ∗16] NR-IQA mea-
sures all exhibit both positive and negative correlations for different
validation scenes; indicating that they are not accurately describing
the underlying distribution of visible distortions present in the im-
ages. Compared to the closest competitor, BLIINDS [SBC10], this
represents an increase in average correlation accuracy of +0.0433
in PCC, +0.0205 in SROCC, and +0.0574 in Tau between scenes.

5. Conclusions

In this paper we have presented the results of our experiments ap-
plying machine learning to NR-IQA. We have shown that convo-
lutional neural networks acting as localized feature extractors are
sufficiently able to detect and extract noise present in MC rendered
images and that such features can be used for the purpose of NR-
IQA.

When reviewing existing NR-IQA methods we observe that the
vast majority of measures in the literature are trained on images
from publicly available datasets which contain clean reference im-
ages (photographs) and their synthetically distorted test images,
coupled with subjective quality scores given by and pooled over
a set of human observers. We find that synthetic distortions do not
present a representative target for training and evaluating metrics
that will be applied to distorted images from MC rendering pro-
cesses. In our experiments we show that a deep convolutional net-
work NR-IQA model can be trained directly on images containing
these naturally occurring distortions.

A limitation of prior methods is that individual patches from im-
ages must be extracted and processed separately by the network.
This is not efficient and causes many duplicated convolutions be-
tween overlapping image patches, resulting the need to sparsely
sample patches for performance needs. An FCNN based model can
perform a dense regression of the quality score for all pixels in the
source image simultaneously, allowing full images to be processed
efficiently.

To improve accuracy, we incorporate PCC into the loss function
to act as a regularization term, greatly improving training stabil-
ity and accuracy. The model also had a tendency to over-fit on the
training data by focusing on colour palettes, causing it to strug-
gle to correctly predict the quality of images from scenes which
were drastically different to those in the training sets. We solved
this problem by developing a data augmentation scheme which op-
erates in the HSV colour space. By randomly shifting the hue of
input patches, and modulating their contrast and saturation, we dis-
courage the model from using colour information as a feature and
encourage it to look for structural information which remains in-
variant under these distortions.

We compare our proposed method’s accuracy on validation sets
to values computed using existing state of the art NR-IQA methods.
Our model was able to accurately capture the distribution of image

© 2018 The Author(s)
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distortion to a much higher degree than existing methods, achieving
an average correlation of 0.9974 in PCC, 0.994 in SROCC, and
0.9525 in Tau between cross validation folds.

The code for our experiments are released open source, imple-
mented in Tensorflow [AAB15] and Keras [C∗15], and are avail-
able on Github under the MIT license at:
https://github.com/JossWhittle/MC-NR-IQA
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Figure 3: Example predicted quality maps from our model on images from the validation sets. From left to right: The input distorted image
to evaluate. The predicted SSIM map of the noisy image. The true SSIM map of the noisy image compared to the ground truth image. The
ground truth image.
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