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Abstract. Deep convolutional auto-encoder (DCAE) allows to obtain
useful features via its internal layer and provide an abstracted latent
representation, which has been exploited for clustering analysis. DCAE
allows a deep clustering method to extract similar patterns in lower-
dimensional representation and find idealistic representative centers for
distributed data. In this paper, we present a deep clustering model car-
ried out in presence of varying degrees of supervision. We propose a new
version of DCAE to include a supervision component. It introduces a
mechanism to inject various levels of supervision into the learning pro-
cess. This mechanism helps to effectively reconcile extracted latent rep-
resentations and provided supervising knowledge in order to produce
the best discriminative attributes. The key idea of our approach is dis-
tinguishing the discriminatory power of numerous structures, through
varying degrees of supervision, when searching for a compact structure to
form robust clusters. We evaluate our model on MNIST, USPS, MNIST
fashion, SVHN datasets and show clustering accuracy on different super-
visory levels.

Keywords: Deep Convolutional Auto-Encoder · Embedded Clustering
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1 Introduction

In recent years, deep learning methods have shown their robust ability in repre-
sentation learning and achieved considerable success in many tasks. It transforms
raw data into a more abstract representation. A Deep convolutional auto-encoder
(DCAE) is a deep unsupervised model for representation learning. It maps in-
puts into a new latent space, allowing to obtain useful features via its encoding
layer. This high-level representation provides beneficial properties that can sup-
port traditional clustering algorithms in demonstrating satisfying performance.
DCAE has been exploited for clustering analysis, allowing such clustering algo-
rithms to deal with an abstract latent representation in a low-dimensional space.
Different approaches to unsupervised deep clustering have been developed uti-
lizing deep neural networks. A detailed survey can be found in [10]. For instance,
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DCAE with embedded clustering [2] is an unsupervised clustering method that
simultaneously captures representative features and the relationships among im-
ages. In this procedure, the discriminative patterns are only discovered through
certain parts or objects in an image in an unsupervised manner. The goal of
this method is to learn feature representations and cluster assignments simulta-
neously, utilizing the strength of DCAE to learn high-level features. Two objec-
tive functions were utilized: one is embedded into a DCAE model to minimize
the distance between features and their corresponding cluster centers, while the
other one minimizes the reconstruction error of the DCAE. During optimiza-
tion, all data representations are assigned to their new identical cluster centers
and then cluster centers are updated iteratively allowing the model to achieve
a stable clustering performance. The defined clustering objective, as well as the
reconstruction objective, are simultaneously utilized to update parameters of
transforming network.

Providing partial supervision to the clustering process, semi-supervised clus-
tering aims to cluster a large amount of unlabeled data in the presence of a
minimal supervision. Basu et al. [3] studied the effect of using a small amount
of labeled data to generate initial seeds for K-means. Pedrycz et al. [11] also
proposed a fuzzy clustering algorithm with partial supervision. Other works uti-
lize pairwise constrained clustering method as semi-supervised process, which
has been applied to partitioning clustering [14], hierarchical clustering [4], and
density-based clustering [13]. Similarly, supervised clustering includes a super-
visory scheme into the clustering process aiming to improve unsupervised clus-
tering algorithms through exploiting supervised information [15]. Pedrycz et al.
[12] presented fuzzy clustering algorithm with supervision that carried out in
the presence of label information. Eick et al. [7, 6] introduced supervised cluster-
ing methods, which suppose that all obtained clusters hold ground truth labels
aiming to identify class-uniform clusters. Al-Harbi et al. [1] also proposed a su-
pervised clustering method by modifying the K-means algorithm to be used as
a classifier.

Even though conventional semi-supervised and supervised clustering approaches
have received a lot of attention, with the revolution of deep learning, limited at-
tention has been paid to semi-supervised and supervised deep clustering models
compared with unsupervised deep clustering. Therefore, providing a way to in-
ject varying degrees of supervision into the body of the deep learning process and
exploring the influence of adding supervision knowledge into a deep clustering
model are worthwhile to understand discriminatory power obtained by patterns
or provided by supervision components.

In this paper, we focus on a deep clustering model, where varying degrees of
supervision can be injected into the body of the learning process. We propose a
new version of DCAE to involve a supervision component. Injecting supervision
allows us to experience different discriminatory powers, which can be provided
by supervisory knowledge or obtained by data-driven discriminative attributes
and examine the clustering performance through different levels of supervision.
The proposed method is aimed at forming a kind of a structure that recon-
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ciles structure discovered by the clustering process and structure provided by
labeling patterns. This mechanism makes the features derived from the encod-
ing layer are the best discriminative attributes. An available side of background
knowledge along with representative patterns in latent space can be leveraged
to find the best partitioning of data and maximize the purity of clusters. Ex-
perimental results illustrate the influence of adding supervision into the body
of the learning process. In this study, we consider three different learning lev-
els: supervised, semi-supervised and unsupervised. We evaluate our experimental
models on MNIST, USPS, MNIST fashion, SVHN datasets and show clustering
accuracy of our model through supervised, semi-supervised and unsupervised
learning levels.

2 Method

The proposed approach is a DCAE with embedded clustering that is carried
out in presence of varying degrees of supervision. It introduces a mechanism to
inject various levels of supervision into the body of the learning process. This
allows us to explore the leverage of supervised information into the performance
of a deep clustering method. In this paper, we consider three different learning
levels: supervised, semi-supervised and unsupervised. Each experimental model
consists of combination objective functions. All objectives are simultaneously
optimized.

2.1 DCAE with Embedded Clustering

DCAE is learned to capture representative features through its encoding layer
by minimizing the reconstruction error using the Euclidean (L2) loss function.

E1 =
1

2N

n∑
i=1

‖ xi − yi ‖2 (1)

where y is a reconstructed image, and x is an original image.
Although DCAE learns an effective representation via its encoding layer, it

does not explicitly force representation forming compact clustering. In [2], we
proposed a DCAE with embedded clustering that learns feature representations
and clusters assignments simultaneously. It embeds K-means clustering into a
DCAE framework and minimizes the distance between data points and their
assigned centers in the latent space as follows:

E2 =
1

2N

N∑
n=1

‖ ht(xn)− c∗n ‖2 (2)

where N is the number of data examples, ht(∗) denotes the encoded represen-
tation obtained at the tth iteration, (xn) is the nth example in the dataset x.
and c∗n is the assigned centroids to the nth example. For further detail of DCAE
with embedded clustering, readers can refer to [2].
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2.2 Architecture and Extended Output Layer

Using the extended version of the DCAE with embedded clustering method al-
lows us to inject supervision and utilize its strength to obtain discriminative and
robust features from the encoding layer and allows the deep clustering method
to extract discriminative features and cluster assignments, simultaneously.

DCAE architecture consists of three convolutional layers. This is followed
by two fully-connected layers, of which the second layer has 10 neurons. These
are considered as hidden representations learned through the training process.
A single fully-connected layer is followed by three deconvolutional layers as the
decoding part. ReLU is utilized as the activation function. Table 1 has shown
a detailed configuration of DCAE network architecture. Our extensions to this
architecture are as follows. Firstly, instead of a reconstruction layer at the end
of the DCAE, extra layers are added at the end of the network just after the
reconstruction layer. This allows the passing of supervision knowledge across
the learning process and also the examination of clustering performance with
different discriminatory power that is provided by supervision or obtained from
data-driven discriminative attributes. Secondly, the learned features given by the
encoding layer are optimized to form compact and discriminative clusters using
K-means, which minimizes the distance between a feature representation and
their respective centroid. Thirdly, instead of only minimizing the reconstruction
loss and cross-entropy loss, we iteratively optimize the mapping function of the
encoding part and cluster centers to obtain more effective clustering.

Table 1: Detailed configuration of the DCAE network architecture used in the
experiments.
Layer MNIST USPS MNIST

Fashion
SVHN

Convolutional 5 x 5 x 32 4x4x32 5x5x32 5x5x32
Convolutional 5x5x64 4x4x64 5x5x64 5x5x64
Convolutional 3x3x128 2x2x128 3x3x128 2x2x128
Fully Connected 1152 512 1152 2048
Fully Connected 10 10 10 10
Fully Connected 1152 512 1152 2048
Deconvolutional 3x3x128 2x2x128 3x3x128 2x2x128
Deconvolutional 5x5x64 3x3x64 5x5x64 5x5x64
Deconvolutional 5x5x32 3x3x32 5x5x32 5x5x32

In supervised and semi-supervised models, we have used same architectures,
showing on Table. 1. Instead of a reconstruction layer at the end of the DCAE,
we flatten the output of the reconstruction layer and feed them into a certain
number of nodes in the last layer. The number of nodes depends on the task at
hand, i.e. the number of provided classes (e.g. ten nodes for the supervised case
and two nodes for the semi-supervised case). A softmax function is used for the
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final prediction. The final architecture of our extended model for a DCAE with
embedded clustering is presented in Fig.1.

Two forms of labels are used: true labels and parent-class labels to reflect
two different levels of supervision. True labels are provided in supervised training
process. Parent-class labels are used in semi-supervised deep clustering, that
is true class labels are combined to form parent-class labels. For example, in
clustering digit images using the proposed DCAE, the parent-class labels are
defined as:

ParentLabel =

{
0 Labels < 5

1 otherwise
(3)

The categorical cross-entropy function between network predictions and provided
labels is defined as:

E3 = −
∑
j

ti,j log(pi,j) (4)

where p is prediction, t is the provided label, i denotes the number of samples,
and j denotes the class.

Fig. 1: The architecture of our proposed model.

In the DCAE hidden layer, encoded features are used to compute cluster-
ing loss function that minimizes the distance between data points and their
corresponding cluster centers, Eqn. (2). The overall cost function is thus a com-
bination of reconstructions loss E1, clustering residual in latent space E2, and
categorical cross-entropy loss E3 that minimizes the classification error with
either supervised or semi-supervised scheme:

min
W,b

E1 + E2 + E3 (5)
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3 Experiments and Discussion

The proposed method was implemented using Keras and Theano in Python and
evaluated on four different datasets including MNIST, USPS, MNIST fashion,
and SVHN, which are the most commonly used datasets in the area of deep
clustering. Specifications of these datasets are presented in Table. 2 . The model
was trained end-to-end without involving any pre-training and fine-tuning proce-
dures. All weights and cluster centers were initialized randomly. Adam optimizer
was used where each batch contains 100 random shuffled images.

Table 2: Details of Datasets used in our experiments.
Dataset Examples Classes Image Size Channels

MNIST 70000 10 28x28 1
USPS 11000 10 16x16 1

MNIST Fashion 70000 10 28x28 1
SVHN 99289 10 32x32 3

For MNIST dataset, the experiments were performed using four different
numbers of trained examples, i.e. 2000, 4000, 6000, 8000. We trained our su-
pervised model using these settings with the same number of iteration. The
comparative results are shown in Table. 3, which supports our hypothesis that
a small amount of labeled data can add enough discriminative ability to unsu-
pervised deep clustering. Note that the results are the accuracy of clustering not
classification use reconstructed image.

Table 3: Number of trained samples and clustering accuracy.
Trained Examples Clustering Accuracy

2000 94.24 %
4000 96.48 %
6000 97.52 %
8000 98.06 %

In order to visualize the impact of supervision in deep clustering, the t-SNE
visualization method [9] was applied as a visual assessment to show adding su-
pervision is able to guide the clustering task to obtain more appropriate data
partitioning. Fig.2 shows the latent representation of our proposed methods in
2D space using different levels of supervisions, where color coding of the ground
truth label are used to visualize the clustering results. This shows that adding a
supervision component into DCAE with embedded clustering produces signifi-
cantly more compact clusters. The learned features involves a supervised process
have tighter structures and larger inter-cluster distances compared with semi-
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supervised and unsupervised models. Injecting supervision into the learning pro-
cess effectively reconciles data-driven-obtained representations and the provided
supervisory knowledge to form the best partitioning of data and to maximize
the purity of clusters. With the semi-supervised approach (Fig.2b), the clustering
result show typical compact clusters, producing much better clustering results
compared with unsupervised models (Fig.2c), which shows the learned features
are sparse and not compacted. Fig.2d shows that the data distribution on latent
space using normal DCAE which was trained only to optimize reconstruction er-
ror. Compared to Fig.2c which enforces compact representation on hidden layer,
the clusters forming by normal DCAE have higher intra-cluster variance and
lower inter-cluster difference. By adopting semi-supervised (see Fig.2b) and su-
pervised (see Fig.2a), intra-cluster variances are reduced significantly while the
inter-cluster distances are enlarged. Especially, less cluster outliers are observed
in Fig.2a.

(a) Supervised Clustering (b) Semi-supervised Clustering

(c) Unsupervised Clustering (d) DCAE without Clustering

Fig. 2: Visualizations of latent representation for our method through a different
supervisions levels on MNIST testing set.
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In addition, we analyze the invariance properties of learned representation
given different levels of supervision. We have trained five different models with
varying degrees of supervision: supervised, semi-supervised with three differ-
ent percentages of supervision (20%, 30%, 50%), and unsupervised. We apply a
range of rotation-based transformations (rotate by 90o, 180o, 270o, flip horizon-
tally, flip horizontally and rotate by 90o, 180o, 270o) to each image. We follow [5,
8] to measure the variance properties by calculating Mean Squared Error (MSE)
between the features of the original images and the transformed ones. The re-
sult is shown in Fig.3. The figure compares the invariance properties of learned
representation in five different models. Overall, the experiment empirically con-
firms that the features are more invariant when no supervision is provided. In
other words, the features learned by the unsupervised model are more invariant
compared to features learned with supervision.

(a) Conv-1 (b) Conv-2

(c) Conv-3 (d) Encoding

Fig. 3: Invariance properties of the learned representation in different layers
from five different models.
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We empirically evaluated the performance of representation learning of DCAE
with different supervisory schemes by calculating the clustering accuracy against
the true label. These experiments show a discriminative representation can form
a kind of structure that reconciles structure discovered by clustering process
and structure formed by labeling patterns. An available side of label informa-
tion along with data-driven patterns were efficiently brought together to support
the clustering process. Injecting true labels or partial supervision into the DCAE
with an embedded clustering method allows the clustering algorithm to perform
much better compared with the models that utilize an unsupervised learning
process. Label consistency can add a discriminative power that clearly guides
the clustering algorithm to obtain the best, most accurate compacted groups
compared with data-driven discriminative attributes. Table 4 summarizes the
results on four different datasets including MNIST, USPS, and more challenging
ones, such as MNIST fashion and SVHN. Since the performances were evalu-
ated on a classification task, the accuracy increasing with supervision knowledge
enforced can be observed on both cases. Particularly for SVHN dataset, the ac-
curacy is boosted more than two times when weak labels are provided. We argue
that the common structures are not well formed without supervision where there
are large variances in appearance and noisy in images are observed commonly
in SVHN dataset.

Table 4: Comparison of clustering accuracy on four different datasets.
MNIST USPS MNIST fashion SVHN

Unsupervised [2] 92.14% 89.23% 60.42% 17.41%
Semi-supervised 97.77% 91.92% 63.59% 34.96%

Supervised 98.82% 95.06% 88.73% 92.40%

4 Conclusion

In the paper, we proposed a DCAE model which is capable of learning compact
data representation that can be incorporated into different learning schemes,
i.e. unsupervised, semi-supervised, supervised. We found that such supervision
knowledge greatly helps to form discriminative transformations that are learned
by the encoding part of a DCAE model and significantly improves the perfor-
mance of clustering. It implies that the latent space has the potential to be used
for image generation/ synthesis. The results also demonstrate that even weak
or partial supervision knowledge can significantly improve the quality of deep
clustering.
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