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Introduction

v Data compression forms a central role in handling the 
bottleneck of data storage, transmission and processing.

v Data compression techniques can be divided into two main 
types: lossy and lossless compression. 

v Choosing which type to use relies on the application 
requirements.

v For medical image compression, the lossless approach is more 
appropriate since it recovers the original data without any loss 
in quality.
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Related Work 

State-of-the-art Classical Methods: (Lossless)
v Image Encoder:

JPEG2000 [1], JPEG-LS [2], CALIC [3], MRP [4].

v Volumetric Encoder: 
JP3D [5],  HEVC [6], 3D-CALIC [7], M-CALIC [8], 3D-MRP [9].
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Related Work

State-of-the-art Deep Learning Methods:  (Lossy)
v Dimensionality reduction (Autoencoders) [10].

v Super-resolution images or video reconstruction [11].

v Estimating pixel likelihood (Auto-regressive) [12].

v Generative compression [13].
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Related Work

State-of-the-art Deep Learning Methods:  (Lossless)
vThe current deep learning literature for lossless compression 

usually combine a density estimator model with an arithmetic 
coder.

vThe density estimator can be categorized into various types:
ØFully connected NN [14].

ØRecurrent Neural Network (LSTM/GRU)  (DeepZip) [15].

ØA recursive bits-back coding with hierarchical latent variables (Bit-Swap) [16].
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Motivation 

v According to Diagnostic Imaging Dataset Statistical Release 
published by NHS, between September 2018 to September 
2019 over 45 million medical images acquired for clinical use 
including 5.8M CT scans and 3.7M MRI scans [17].
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Motivation 

v Especially for clinical purposes, artefacts that introduced by 
lossy compression could result in misleading diagnosis and 
unfavorable treatment.
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Motivation 

• There is a need for a compression tools that:
v Utilizes deep learning technique for Lossless compression 

performance.
v Has computationally efficient (parallelized) 

encoding/decoding performance.
v Achieves a higher compression ratio compared to the 

state-of-the-art lossless compression methods. 
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Contributions

v A novel 3D predictor model using neural network that achieves 
lossless compression for volumetric medical images. 

v A computationally efficient model that achieves higher 
compression ratio when compared to state-of-the-art lossless 
compression methods. 

v Empirically, demonstrate the robustness and generalization of 
our proposed models on many datasets for higher dynamic 
range (16 bit-depths).
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Proposed Method 
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v The regression problem can be solved by learning a mapping 
function ! that predict the output "# from an input sequence $
through the back-propagation process given a training dataset. 



Proposed Method 
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v Given a data distribution defined over ! ∈ #$, where ! contains 
input samples from the same distribution ! = {'(, '*, … , ',}
forms a 1D vector of immediately neighboring voxel-intensities. 

v We learn a differentiable mapping function ./ = f(!) that maps 
the input vector ! to a predicted value ./ to minimize the 
differences with the ground truth voxel value /, where f(!) is 
represented using a neural network model.

v The residual (prediction) error 3: 
3 = / − ./



Proposed Method 
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Network Architecture
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Network Architecture

Layer Number of Neurons Activation Function Used

Fully Connected 1024 LeakyRelU

Fully Connected 512 LeakyRelU

Fully Connected 256 LeakyRelU

Fully Connected 128 LeakyRelU

Output 1 Linear
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Local Sampling
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Local Sampling
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Local Sampling
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Local Sampling
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v All volume values are normalized to the range [-1,1] and the  
volume is padded, as determined by the block size, by its 
minimum voxel value. 

v Padding the volume is crucial in order to include the edge and 
corner cases in training.

v All the 3D sequences will be flattened to 1D vectors and 
randomly shuffled before inputting them to the predictor
models. 



Hyper Parameters

Model 
ID Sampling Space Shapes of the input

Neighboring Block Hyper Parameters

1

All samples were generated from 

10 slices extracted from one 

volume (patient 40)

3D Cube input

sequence

(11x11x11)

Batch size = 256, learning rate = 2e-4, 

no L2 regularization, no dropout,

and no batch normalization

2

All samples were generated from 

10 slices extracted from one 

volume (patient 40)

3D pyramid input

sequence

(13x13, 9x9, 5x5, 1x1)

Batch size = 32, learning rate =3e-5,   

no L2 regularization, no dropout,

and no batch normalization
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Loss Function 

!"#$%& = ()* + ,(1 − 011 )

()* = ∑$45% 6 − 76
8

011 = 9:;(6, 76)
=>=7>
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Result & Discussion
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v We evaluated the compression performance 
in bits-per-pixel (bpp) of the proposed neural 
network models in comparison to the state-
of-the-art lossless compression methods 
including JPEG-LS, JPEG2000, JP3D and HEVC.

v Our models were trained on one training set. 
However, the evaluation was conducted on 
two different test sets:

Ø Testset1 (42 volumes)
Ø Testset2   (2 volumes)



Result & Discussion (Testset1)
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Result & Discussion (Testset2)
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Set Type Volume ID
Pixel Spacing,

Slice Thickness
JPEG-ls JPEG2000 HEVC JP3D Model 1 Model 2

Training 
Set

40 0.625, 0.625, 0.625 5.387 5.387 5.389 5.23 5.256 5.119

Testset2
[18], [19]

CT Lung R004 0.830,  0.830,  5.00 5.937 6.014 5.739 5.967 6.664 6.715

CT Lung R013 0.623,  0.623,  5.00 5.747 5.539 5.835 5.623 5.959 5.847 
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Result & Discussion (Testset2)
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Set Type Volume ID Pixel Spacing,
Slice Thickness JPEG-ls JPEG2000 HEVC JP3D Model 1 Model 2

Training 
Set

40 0.625, 0.625, 0.625 5.387 5.387 5.389 5.23 5.256 5.119

Testset2 
[18], [19]

CT Lung R004 0.830,  0.830,  5.00 5.937 6.014 5.739 5.967 6.664 6.715

CT Lung R013 0.623,  0.623,  5.00 5.747 5.539 5.835 5.623 5.959 5.847 

Resampled
Testset2

CT Lung R004 0.625,  0.625,  0.625 5.459 5.243 - 5.195 4.915 4.904
CT Lung R013 0.623,  0.623, 0.625 5.698 5.485 - 5.375 5.237 5.238



Conclusion

vWe proposed a novel lossless compression system using a 
neural network for volumetric medical images (16 bit). 

vTwo localized sampling methods were introduced and 
evaluated on real 3D volumetric medical imaging datasets. 

vThe comparison study shows that our method outperforms the 
standard lossless compression methods. 

v It also suggests that the proposed method is feasible to 
generalize to unseen dataset while retains satisfactory 
performance.
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Future Work 

33

v Study of generalization across samples with different pixel 
spacing or scan quality.

v The effect of model size and weight sparsity on compression 
ratio from transmitting both the compressed representation 
and decoder. 

v Optimization of the decoder to leverage parallelism over the 
diagonal leading edge to reduce decode time.
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