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Abstract—As scanners produce higher-resolution and more
densely sampled images, this raises the challenge of data stor-
age, transmission and communication within healthcare systems.
Since the quality of medical images plays a crucial role in diagno-
sis accuracy, medical imaging compression techniques are desired
to reduce scan bitrate while guaranteeing lossless reconstruction.
This paper presents a lossless compression method that integrates
a Recurrent Neural Network (RNN) as a 3D sequence prediction
model. The aim is to learn the long dependencies of the voxel’s
neighbourhood in 3D using Long Short-Term Memory (LSTM)
network then compress the residual error using arithmetic
coding. Experiential results reveal that our method obtains a
higher compression ratio achieving 15% saving compared to
the state-of-the-art lossless compression standards, including
JPEG-LS, JPEG2000, JP3D, HEVC, and PPMd. Our evaluation
demonstrates that the proposed method generalizes well to unseen
modalities CT and MRI for the lossless compression scheme. To
the best of our knowledge, this is the first lossless compression
method that uses LSTM neural network for 16-bit volumetric
medical image compression.

I. INTRODUCTION

Hospitals acquire a massive amount of data on a daily
basis. Among this information, medical images contain a
large amount of valuable data, which also consumes a vast
amount of storage. According to the UK NHS Diagnostic
Imaging Dataset Statistical Release, up to 23.5 million X-rays,
3.74 million Magnetic Resonance Imaging (MRI), and 5.67
million Computed Tomography (CT) scans were produced
with a total of 45 million medical images were acquired in
a one-year period (Sep 2018 - Sep 2019) [1]. Radiologists
use these scans for clinical purposes, including diagnosis or
pre-surgery planning. Therefore, keeping these scans’ quality
and accuracy for accurate diagnosis while reducing storage
size form a significant challenge. Although lossy compression
methods may achieve a higher compression ratio, they are
not recommended in the medical imaging domain due to the
loss of critical data or introduction of artefacts, which could
influence data fidelity and result in misleading diagnosis [2].
Maintaining quality and accuracy while reducing the file size
form the primary intention of lossless compression, which
reduces storage overhead and guarantees exact reconstruction.

Compression performance depends on the type of data
redundancy which is classified into three main types, spatial,
coding, and spectral (psycho-visual) redundancy [3]. Each type
represents the correlation between different parts of the data,
and by reducing such repetition, a coder gains compression.

Deep learning approaches form a promising and emerging
research direction due to its ability in estimating non-linear

transformations and likelihood data estimation. Current state-
of-the-art deep learning methods illustrate that neural networks
can construct lossy and lossless performance with results
comparable to or even better than standard linear codecs. In
this work, we propose a lossless compression approach using
LSTM specifically for 16 bit volumetric medical images.

Our proposed lossless compression framework integrates a
recurrent neural network (LSTM) to learn spatial correlations
of neighbourhood sequences within the 3D regions followed
by an entropy encoding for the residual errors. A high-level
overview of our proposed lossless compression framework is
given in Fig. 1. Given a set of neighbouring voxels, the LSTM
model predicts the next intensity value in the sequence. The
prediction error is calculated as the difference between the
Ground Truth (GT) voxel and the predicted one. If many of
the error values are negligible (equal zero), this indicates that
the model is accurate. All prediction errors are compressed
using entropy coding such as Huffman and arithmetic coding
to reduce the coding redundancy. Storing and transmitting the
compressed error reduces the file size compared to the GT
volume. The contributions of this paper are as follows:

o A novel lossless compression method using LSTM recur-
rent neural network cells that achieves a higher compres-
sion ratio compared to state-of-the-art lossless compres-
sion methods.

e Our proposed approach MedZip is for a domain-specific
application, namely, volumetric medical images (with 16
bit-depth).

o We demonstrate the generalization of our proposed mod-
els on many datasets for higher dynamic range.

The rest of this paper is organized as follows. Section II
highlights the current research trends in data compression,
including non-learned lossy and lossless compression literature
and deep learning compression literature. An overview of the
proposed methodology and models architectures are given in
Section III. A description of the dataset details is presented in
Section IV. The same section describes the experimental and
implementation details of our LSTM models, including input
sequence specifications and sampling scheme. A subsection in
IV provides the compression results of our proposed models
compared to the state-of-the-art lossless compression methods.
Finally, section V concludes the main objectives of this paper.
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Fig. 1. An overview of our proposed lossless compression framework using LSTM

II. RELATED WORK
A. Compression Type

Data compression techniques can be divided into two main
types — lossy and lossless compression. Choosing which type
to use relies on the application requirements. For medical
image compression, the lossless approach is more appropriate
since it recovers the original data without any loss in quality.

B. Entropy

Information theory quantifies the amount of information
present in random variables and distributions. Data compres-
sion is a field of information theory interested in techniques for
reducing the size of a data stream to overcome the bottleneck
of data storage, transmission and processing. In the context
of data compression, information theory is applied to find
the optimal codec that achieves the best compression and the
lowest entropy. The more deterministic the data distribution
is, the lower entropy the coder gains [4], [5].

Lossless compression is known as reversible compression,
which aims to send a stream of data m with a codelength
bounded to the entropy L(m) > H(m). Given a message
m € M = {my,ms,...,my} with probability distribution
Pyata(m), a sender will encode the data m into a sequence of
bits with a codelength L(m). The encoder uses a probabilistic
model P(m) to define the codelength —log P(m) for each
symbol m; in the stream. If the codelength I(m;) is equal to
—log Pyata(m;) for all symbols in the message, the encoder
achieves the maximum compression (entropy):

H(m)=— Y P(m;)log P(m;) (1)
m;EM
When the receiver gets the compressed bitstream, a decoding
or reverse operation is applied and the original data m is fully
reconstructed without any loss of information.

C. Sequence Models

A sequence model is a particular type of neural network
that learns a mapping function f(z) from an input z; with
sequence length [ to an output y;. Such networks maintain
an internal state or memory unit, while the sequences are fed
through. This internal state is required to aggregate all the
information in the sequences through time. Recurrent Neural

Network (RNN)[6], LSTM [7], GRU [8], and Transformers
[9], [10], [11] are some of the recent deep learning sequence
models.

D. Classic Approaches

The current state-of-the-art (non-learned) algorithm for
medical images lossless compression relies on a hand-crafted
scheme, which can be categorised into a prediction-based or
transform-based algorithm. If a codec is computed in 2D
space (i.e. image), it is classified as image encoder. How-
ever, coders computed over three-dimensions are volumetric
encoders. Most algorithms involve quantisation or entropy
coding for further coding reduction. In adaptive prediction-
based approaches, the encoding of values is usually context-
sensitive on estimating the local gradients. The encoding mode
is selected based on a local causal template. Lossless and
Near-Lossless Compression of Continuous-Tone Still Images
(JPEG-LS) [12], context-based adaptive lossless image codec
(CALIC) [13], and Minimum Rate Predictor (MRP) [14]
are some of the standard lossless predictive image codecs.
Alternatively, the transform-based algorithm transform an im-
age spatial domain into frequency domain to make it more
compressible. A well-known transform-based image coder is
Joint Photographic Experts Group 2000 (JPEG2000) [15],
[16], which applies a Discrete Cosine Transform (DCT) and
Discrete Wavelet Transform.

Most of the volumetric encoders (3D codecs) were intro-
duced by extending the image-based codecs functionality to
higher dimensional space. These codecs exploit inter-frames
correlation as well as spatial correlation, which further en-
hances compression performance. JP3D is an extension of
JPEG2000 (Part 10), which upgrades wavelet transform to 3D
known as 3D-DWT [17]. Another 3D codec that enhances
an existing 2D codec (CALIC) is known as 3D-CALIC [18],
which gains higher compression performance. 3D-CALIC in-
volves interband and intraband correlation approaches for mul-
tispectral images, which achieves better exploits of redundancy
in a 3D context. An improved and further optimised version of
3D-CALIC was presented by Magli et al. known as M-CALIC
[19]. The essential contribution of that version is achieving
near-lossless and lossless performance for hyperspectral data
with a multiband algorithm. A more efficient lossless encoder



for medical imaging volumes and an upgrade of the MRP
method was presented by Lucas et al. [20], which is known
as 3D Minimum Rate Predictor (3D-MRP). The experimental
results of this method earned higher compression efficiency
compared to the other lossless compression literature for 16-
bit medical image resolution. High-Efficiency Video Coding
(HEVC) is a standard lossless coder for video compression
purposes [21]. Although this coder was developed originally
for video compression, it can be applied to 3D medical images
compression using Range Extension [22] with 4:0:0 chroma
format for one colour component 16-bit data.

The classical hand-crafted codecs may have limited ability
in representing non-linear correlations or high-dimensional
data distribution. This critical limitation rises the demand
for new compression approaches with higher flexibility and
generalizability in representing nonlinearity. Recently, state-
of-the-art deep neural networks models demonstrate great
potential in representing high-dimensional data distribution for
both lossy and lossless compression performance. Moreover, a
higher compression ratio can be achieved using deep learning
methods compared to traditional linear methods.

E. Learning Based Approaches

Deep learning methods form a promising research direction
for data compression. Training ability, learning capacity, model
generalization and excellent performance in modelling non-
linearity and higher-dimensional data are the most compelling
features of deep learning approaches. The research develop-
ment on compression is classified into developing modelling
techniques, coding algorithms or a combination of both (learn-
ing an end-to-end compression framework).

1) Lossy: Most state-of-the-art deep learning approaches
address lossy reduction to assist purposes such as dimen-
sionality reduction (autoencoders), estimating pixel likelihood
(autoregressive), and generative compression. A comprehen-
sive survey on learning lossy image compression methods was
conducted by [23]. Dimensionality reduction is accomplished
by learning an invertible mapping of the data distribution to
the quantized latent space, which eventually will losslessly
be compressed. Such a mapping is usually estimated using
compressive autoencoders [24], variational autoencoders [25]
[26], and LSTM-based autoencoders [27] [28]. An end-to-end
lossy compression method using encoder-decoder RNN-based
architecture combined with an entropy coding was presented
by Toderici et al. [28]. Sushmit et al. [29] provide another
learnable encoder-decoder based on convolutional Recurrent
Neural Networks (RNN-Conv) specifically for chest X-ray im-
ages. Estimating image probability distribution based on pixel
likelihood is usually known as an autoregressive likelihood
model, which is one of the compelling methods in context
modelling. Using this approach, predicting any pixel relies
conditionally on the probability distributions of all its pre-
vious pixels. This dependency process may affect the overall
model complexity due to its sequential implementation. Recent
approaches reduce the complexity by applying parallelized
and dependency reduction approaches or adding regularization

to enhance the training process. Some of the state-of-the-art
autoregressive models are PixelCNN [30], Pixel CNN++ [31],
PixelRNN [32], and Multiscale-PixelCNN [33].

2) Lossless: While a considerable amount of effort has
been made to address lossy performance using neural net-
works, less attention was paid to achieve lossless compression.
DeepZip [34] is a lossless compression framework that uses
RNN (LSTM/GRU) as a probability estimator for compressing
genomics and text data. This statistical model combines RNN
with arithmetic coder to learn the casual distribution of a
symbol based on the previously encountered symbols. Com-
pared to their method, we formulate the lossless compression
as a regression problem, not as a classification problem. Our
sequence prediction models predict the target voxel intensity
given a sequence of samples from its neighbourhood. Another
difference is that all our proposed MedZip models are trained
once and generalize to unseen medical datasets. Bit-Swap
[35] is another lossless method which provides an efficient
factorized compression and decompression scheme using a
recursive version of Bits-Back coding method [36]. Bits-Back
coding integrates an Asymmetric Numerical System (ANS)
as an entropy coder. Bit-Swap has a density estimator, which
performs a bit-rate closely matches the negative ELBO on
average using a hierarchical latent variable model with Markov
chain structure.

[II. METHODOLOGY

A. Overview

As the LSTM model is one of the state-of-the-art sequence
models, we formulated our proposed lossless compression
approach as a supervised sequence prediction problem and
integrated the LSTM model as 3D sequence predictor (see
Fig. 1). Our LSTM model solves a many-to-one sequence
prediction problem, which takes a sequence of 3D neigh-
bouring voxels as input and predicts the next intensity value.
The intention of using LSTM memory cell to solve the
sequence prediction is its ability to maintain the gradient
flow across the cells in a way considerably better than RNN.
The gates mechanisms in LSTM controls updating the long
dependencies with less potential to get gradient vanishing
or exploding problems. Such flow control (gates) allows the
internal memory of LSTM to learn the long-term inter-frame
correlation between slices as well as the spatial correlation. As
shown in Fig.1, both sender and receiver have the same LSTM
predictive model with the same architectures and sharing the
same weights. Given a data distribution defined over V' € RN,
we extract training sequence samples X,, C V, where each
X; = {z1,22,...,4y_1} is a flattened vector containing 3D
neighboring intensities of voxel y; and [ is the sequence length
of the 3D neighborhood. The LSTM model is trained to learn
a differentiable mapping function y; = f(X;) that maps a
sequence input X; to a single output y; to minimize the
difference with y; (ground truth voxel). After training, the



model applies compression, with the sender computing the
residual error (prediction error) E for each voxel as

E:yn_’gn 2

The error is compressed with arithmetic coding and sent or
stored with a lower bit-rate. To reconstruct the original data by
the receiver, a reversed operation is applied by the arithmetic
decoder, which losslessly reconstructs the residual error FE.
The LSTM model is used to generate predictions g,,, which
are added to the error values E as illustrated in figure 1.

B. Network Architecture

The proposed models are Vanilla LSTM models, which are
composed of the input layer, LSTM layer with 128 cells, and
a linear output layer. The activation functions of the LSTM
cells are sigmoid and tanh.

Inspired by [37], a joint loss L ;o (Eq. 3) was chosen as
the loss function for all the proposed model. This loss function
jointly combines the Mean Absolute Error (MAE) (Eq. 4) with
the Pearson Correlation Coefficient (PCC) (Eq. 5) also known
as bivariate correlation

Ljoint = MAE + \(1 — |PCC)) 3)
MAE — M 4)
n
poc - W, 9) 5)
Oy0y

Where, cov is the covariance, o, is the standard deviation
of y, and oy is the standard deviation of 7. The intention of
using PCC in the loss function is to measure the statistical
relationship between the ground truth value y and y. When
PCC = 0 this means no linear correlation between the two
continuous variables. In the L., the absolute value of PCC
is computed, which limits the PCC value to be less than or
equal to 1. If the value is equal to 1, it means the variables
are linearly correlated. Incorporating PCC with the MAE for
solving the regression problem has a significant impact in
enhancing the accuracy and stabilizing the training.

C. Local Sampling

In a sequence prediction model, the shape and amount of
the input sequence form a crucial role in learning the mapping
function of the data distribution to the target output. The
sequence length is determined by the number of previous
observations or features imposed with some explicit order
that a model analyses before making a prediction. However,
within a recurrent neural network, the challenge that arises is
as the sequence length increases, the model will suffer from
the vanishing or exploding gradient problem. Practically, by
breaking the input into a smaller fixed sequence length, this
problem can be avoided. Image compression generally utilises
the four previous neighbouring pixels to encode the target
pixel. Video and 3D predictor codecs involve neighbouring
pixels from previous frames to discover temporal (inter-frame)
redundancy.

In our proposed sequence prediction model, we formulate
the input sequence to utilise 3D neighbours (i.e. integrating
information from previous slices) with a decreased number of
voxels. We refer to this sequence pattern as 3D pyramid (see
Fig. 2.b). A comparison to block based models is given in
section IV. The aim is to learn 3D spatial correlation within the
volume space by fetching a fixed-length representative input
sequence that can lead to optimal compression. We choose
a 3D pyramid sequence with (13 x 13,9 x 9,5 x 5,1 x 1)
regions on each slice to be the input sequence to our models.
To choose the training set we sampled uniformly through
multiple volumes with a specific pixel spacing. For each voxel
in the set, we extract the 3D pyramid neighbouring sequences
(edge voxels are padded with minimum intensity). All volume
values are normalized to the range [—1,1]. Each sequence
prediction model is trained to make one-step ahead prediction
until convergence.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We used the compression ratio in Bit-per-pixel (BPP) pre-
sented in equation 6 as our evaluation criteria to compare
the performance of our method to the state-of-the-art lossless
compression methods.

Compressed Image Size (Bits)
Number Of Voxels

It is important to understand that we compare the compression
size of the volumetric residual, the prediction error computed
with equation 2 (generated by our proposed LSTM models)
to the compressed size of the GT medical volume (generated
by state-of-the-art lossless compression methods).

BPP = (6)

A. Dataset

The two datasets used in this paper consist of a set of
DICOM files with two different modalities Computed Tomog-
raphy (CT) and Magnetic Resonance Imaging (MRI) stored in
16-bit grayscale images. Datasetl is a private dataset, which
contains 43 volumes generated by the same hospital and
represents CT scans for a patient’s entire trunk. All the scans
have the same width and height 512 x 512; however, they differ
in the depth of the volume z € [750, 1120]. The slice thickness
is 0.625mm in all patients in Datasetl. The pixel spacing
varies between patients PS € {.488,.578,.625,.703}. Inten-
sity values range from -1024 to 3071 (12 bits stored as 16 bit
integer). The proposed three models were trained on random
subsets extracted from volumes with a specific pixel spacing
(i.e. MedZipl and MedZip2) or a subset obtained from various
pixel spacing (i.e. MedZip3 training set). Table I presents an
overview of the training set for each model. The evaluation
was conducted on TestSetl, which contains the rest of the
volumes belonging to Datasetl. We also evaluate our three
proposed models on a public dataset (TestSet2), which has
a different modality (MRI) and represents a different part of
the patient’s body, namely, head and neck [38], [39]. TestSet2
contains 12 volumes stored in 16-bit grayscale images. All
volumes have 512 x 512 x 120 resolution, slice thickness 2mm,



Model ID Training Set (Pixel Spacing) Slice Thickness Hyper Parameters Preprocessing
MedZipl Random samples from volumes with pixel spacing .488 .625 legfr:icr?gsll'zfejoz ?)’0(()%)5 —3D pyramid neighboring sequence
Baich size—liS T with (13 x 13,9 X 9,5 x 5,1 x 1)
MedZip2 Random samples from volumes with pixel spacing .625 .625 learni P sequence size.
earning rate=0.00005
Baich sze=178. & —All samples values are
MedZip3 | Random samples from volumes with pixel spacing .488, .578, .625 .625 learning rate:O.dOO 1 normalized between [-1, 1].

TABLE I
AN OVERVIEW OF THE TRAINING SET AND THE TRAINING HYPER PARAMETERS FOR EACH OF THE PROPOSED LSTM MODELS.

and PS = .5 pixel spacing. The minimum intensity value is
0, and the maximum is 689.

B. The Proposed Models

This subsection provides the experiential and training details
for the three proposed sequence prediction models. For all
these models, we used a vanilla LSTM architecture (see
section III-B). Since the capacity of the recurrent network
is determined by the number of memory cells the network
has, we found the LSTM with 128 cells has enough capacity
to learn the 3D voxel correlation. This relatively compact
network reduces the overhead of model size.

b) |

o

)

Fig. 2. Two different neighborhood shapes: a) 3D Cube Neighboring
Sequence and b) 3D Pyramid Neighboring Sequence. z=0 represents the
current slice. The red voxel refers to the target voxel that needs to be predicted,
and blue voxels are the input sequences while the white voxels are ignored
(masked)

3D Pyramid 3D Cube
Neighboring Sequence Neighboring Sequence
Neighborhood
Blofk Size (13x13,9x9, 5x5,1x1) (5x5x5) | (7x7x7) | (9x9x9)
Bits-Per-Pixel (BPP) 4.267 4.702 4.478 4.36
Compression Time 1:23:58 0:44:51 | 1:17:13 | 2:27:47
(hh:mm:ss)
TABLE 1T

COMPARING THE COMPRESSION PERFORMANCE (COMPRESSION RATIO
(BPP) AND COMPRESSION TIME) OF DIFFERENT NEIGHBORING
SEQUENCE (3D PYRAMID & 3D CUBE) WITH DIFFERENT BLOCK SIZES.

Two different 3D neighbourhood shapes were applied to find
the input sequence that can lead to an optimal compression,
namely, the 3D cube and 3D pyramid neighbouring sequence.
Each type introduces a diverse coverage of the block around
the target voxel. Figure 2 illustrates an example of each 3D

shape. For both types, z=0 represents the current slice. The
sequence only includes voxels from the current slice and the
previous slices. The red voxel refers to the target voxel that
needs to be predicted, and blue voxels are the input sequences
while the white voxels are ignored (masked). In the same
figure, a) the 3D cube neighbourhood size is (7x7x7) while b)
the 3D pyramid neighbourhood size is (7x7,5%x5,3%x3,1x1).

The intention of choosing the 3D pyramid neighbouring
sequence with this specific shape is built upon applying
Manhattan distance from the target voxel to a certain distance
in each dimension. The 3D local appearance and structures
tend to be highly correlated, which can lead to spatial and
interframe redundancy. Experimentally, different lengths to the
target voxel were applied to select the 3D neighbouring size
with the best compression performance as presented in Table
II. Both compression ratio in (BPP) and compression time
have been computed to select the optimal input sequence. As
illustrated in Table II, the pyramid structure was compared to
a full block neighbourhood at (5x5x5), (7x7x7),(9x9x9)
block sizes. As expected, with the increase in the 3D cube
block size, the compression rate also increases as well as the
compression time due to the longer sequence length. The 3D
pyramid neighbourhood demonstrates a great balance between
the compression time and overall compression achievement.
Therefore, the 3D pyramid sequence with (13 x 13,9 x 9,5 X
5,1 x 1) sequence size was used as input for all the proposed
models. We found that compared to using a full cube block,
there was no performance loss in terms of size of compressed
file and the training time was substantially reduced because
fewer samples were used.

The training hyper-parameters and training set specifications
of the three models are provided in Table I. As Datasetl
has variance in the pixel spacing between volumes, we em-
pirically investigate the effect on compression ratio when
training on different spacing. MedZipl was trained on sam-
ples selected randomly from volumes with [.488,.488] pixel
spacing. MedZip2 was trained on samples from volumes with
[.625, .625] spacing. MedZip3 was trained on subsets sampled
equally from volumes with all different spacing [.488,.488],
[.578,.578] and [.625,.625] pixel spacing. Both MedZipl
and MedZip2 were trained with batch size=128 and learning
rate=0.00005. However, MedZip3 training hyper parameters
are batch size=128 and learning rate=0.0001. All LSTM
networks were optimized by Adam optimizer with 5; = 0.9,
and B2 = 0.999. The parameter X in the joint 10sS Ljoin:
(equation 3) was set to A = 1, which weights the contribution
of the two losses to be the same.




C. Comparisons with the state-of-the-art

In this subsection, we evaluate the compression performance
of our three proposed models on two different medical images
datasets (TestSet] and TestSet2). We compare the compression
size of our models to the state-of-the-art lossless compression
methods. The selected methods include image-based codecs,
namely, JPEG-LS [40], and JPEG2000 (OpenJPEG software)
[41] and 3D volumetric codecs — JP3D [41], and HEVC (HM-
SCC-extensions-4998) using lossless configuration with main-
REXxt profile available in [42] [22]. The evaluation compression
also includes the Prediction by Partial Matching (PPMd) algo-
rithm [43] with ultra compression level. We have benchmarked
our approach against a deep learning lossless compression
method known as LSTM-Compress [44].

TestSetl. The evaluation over TestSetl is illustrated in
Fig.3. The volumes are classified into four sets based on their
pixel spacing value — separated with the horizontal black lines.
Each row represents a volume except for the last row which
is the average of (BPP) for each method through all volumes.
The first column presents the pixel spacing of each volume
in Dataset]l. Cells in the first column are highlighted from
minimum pixel spacing .488 (White) to maximum spacing
.703 (Black). Each other column represents the bits per pixel
(BPP) of a lossless compression method, including PPMd,
JPEG-LS, JPEG2000, HEVC, JP3D, MedZip1, MedZip2, and
MedZip3, respectively. Cells are highlighted from the maxi-
mum compression 3.837 BPP (Blue) to lowest compression
6.236 BPP (Red). Overall, the performance of our RNN mod-
els illustrate the best improvement in compression compared to
the standard algorithms. Among the standard codecs, JP3D has
a better bit-per-pixel than the image-based codecs (i.e. JPEG-
LS and JPEG2000) through its exploitation of 3D correlation
within frames. HEVC 3D-codec gave worse than average
compression results on volumes with pixel spacing .488 and
.57 but slightly better performance than image-codecs (JPEG-
LS and JPEG2000) on volumes with larger pixel spacing.
For the standard compression methods, PPMd produces the
least compression ratio overall on volumes in TestSetl. Of
our new methods, MedZipl has the best compression ratio
for volumes with .488 pixel spacing — the spacing it was
trained-on. Less performance was gained on volumes with
larger pixel spacing but still better than classical approaches.
MedZip2, which was trained on .625 pixel spacing, gains
a considerably good compression ratio overall regardless of
volumes pixel spacing. MedZip3 has a good compression
performance overall on volumes with various pixel spacing
demonstrating generalization. The robustness of this model
was gained by training it on samples that belong to volumes
with different pixel spacing.

TestSet2. To demonstrate the robustness and the general-
ization ability of our proposed LSTM models, we evaluated
our models’ performances on an out of the domain public
dataset that has a different modality (MRI) and represents a
different part of a patients body (head and neck). We also
compare against a deep learning lossless compressor known as
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Fig. 3. Bits-per-pixel (BPP) for each lossless compression method on
TestSetl. The first column is colour mapped by the pixel spacing value of
each volume. The other cells are highlighted from the maximum compression
3.837 BPP (Blue) to minimum compression 6.236 BPP (Red). For the average
row, MedZip3 saves 15.4% space compared to the best performer (JP3D).



LSTM-Compress. The evaluation over TestSet2 is illustrated
in Fig. 4. The first column illustrates the pixel spacing of
TestSet2 which is the same for all volumes (0.5). Each other
column represents the bits per pixel (BPP) of a lossless
compression method, including PPMd, JPEG-LS, JPEG2000,
HEVC, JP3D, LSTM-Compress, MedZipl, MedZip2, and
MedZip3, respectively. The last row is the average of (BPP)
for each method through all volumes. Cells in other columns
are highlighted from the maximum compression 2.949 BPP
(Blue) to minimum compression 4.52 BPP (Red). Among
the standard codecs, JPEG2000 yields the best bit-per-pixel
results followed by JP3D. Unexpectedly, HEVC, which can
exploit inter-frame redundancy, gains only better compression
than PPMd. Additionally, PPMd algorithm has the worst
compression compared to the other methods. Compared to
the state-of-the-art techniques, the deep learning approach
(LSTM-Compress) achieves better compression. Overall, the
proposed RNN approaches gained best compression bit-rate
when compared to the standard codecs and the deep learning
method (LSTM-Compress). Although our models were not
trained on this dataset, they have still obtained the best BPP
reduction.

In comparison to the deep learning method (LSTM-
Compress), our proposed MedZip models demonstrate the best
compression ratio and additionally reduce compression time
showing the strategy of using 3D neighbourhood information
works well to predict voxel values. MedZip models are notably
faster than LSTM-Compress (2.26 hours vs 56.66 hours)
to compress all of the volumes in Testset2. In terms of
compression ratio over Testset2, MedZip has a size reduction
of up to 11% compared to LSTM-Compress. Since each
volume takes around 30 hours to be compressed by LSTM-
Compress, we compared the compression performance of
LSTM-Compress on seven volumes selected randomly from
TestSetl. The average compression performance of MedZip3
on those volumes is 4.50 BPP while LSTM-Compress is 5.13
BPP with MedZip3 showing a saving of 12% over LSTM-
Compress.

In Fig. 5, a summary of the compression performance
over the two test sets is computed for each of the lossless
methods. Each row represents the performance of a single
compression method over different datasets. Cells are coloured
from the maximum compression percentage 100.00% (Blue)
to the minimum performance 136.56% (Red) — (Less value
indicates better performance). Among the existing codecs,
JP3D proposes the best compression performance on TestSetl.
However, over TestSet2, JPEG2000 gains the best reduction.
An unexpected performance was given by the 3D codec
HEVC, which produces only better compression than PPMd
on all datasets. Although the compression level of PPMd
was set to Ultra setting, this algorithm performs the worst
result on average on both datasets. By observing the results of
Fig. 5, the overall compressing performance of our MedZip
models illustrates the best reduction over the different datasets.
MedZip3 outperforms MedZip2 with better reduction up to
5%. The advantage of MedZipl is more noticeable, reaching

a gain of almost 36% over the PPMd. To conclude, MedZip3
performs the state-of-the-art compression percentage 100.00%
on 16-bits volumetric medical images.
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Fig. 4. TIllustrating the compression ratio in BPP for the proposed models
compared to the state-of-the-art lossless compression methods on TestSet2
(16-bits volumes). The first column is colour mapped by the pixel spacing
value of each volume. The other cells are highlighted from the maximum
compression 2.949 BPP (Blue) to minimum compression 4.52 BPP (Red).
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Fig. 5. A summary overview of the compression performance over the two test
sets for all the lossless methods. Cells are coloured from the best compression
performance 100.00% (Blue) to the worst performance 136.56% (Red). (Less
value indicates better performance).

V. CONCLUSION

This paper proposed a novel lossless compression approach
using LSTM, specifically for compressing 3D medical images
(16 bit-depths). We solved the lossless compression problem
using LSTM-based sequence prediction model and 3D pyra-
mid shaped sequences as models input. MedZip empirically
demonstrates a significant reduction in the compressed size
(BPP) when compared to the state-of-the-art lossless compres-
sion methods. Additionally, our pre-trained LSTM model gen-
eralized well to unseen modality (MRI) and achieves a higher
compression ratio compared to the other methods. Moreover,
we believe that the proposed models would achieve more im-
provement by integrating it with attention-based mechanisms.
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