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Abstract

Abstract: As a solution for the lost-in-space star identification problemwe present Star Identification using Graph Neural Network (SIGNN), a

novel approach using Graph Attention Networks. By representing the celestial sphere as a graph data structure, created from the ESA’s Hip-

parcos catalogue, we are able to accurately capture the rich information and relationships within local star fields. Graph learning techniques

allow our model to aggregate information and learn the relative importance of the nodes and structure within each stars local neighbourhood

to it’s identification. This approach, combined with our parametric data-generation and noise simulation, allows us to train a highly robust

model capable of accurate star identification even under intensive noise, outperforming existing methods.

Introduction

Motivation:

Celestial navigation as an offline alternative to GPS, which is vulnerable to interference (spoofing, jamming,

outages etc).

Star detection is largely solved, but star recognition remains challenging in noisy conditions

Graph Neural Networks (GNNs) can capture complex relationships in graph data

Contribution:

SIGNN uses graph-based representations of star-fields + noise simulations to learn robust star representations

for identification.

Achieves superior accuracy over classical and ML-based methods, even at high noise.

ExistingWork & Celestial Sphere

Classical:

Sub-graph isomorphism (Triangle, pyramid )

Star pattern recognition (Grid, radial)

Machine Learning:

CNN-based: spider-web images.

Representation learning: RPNet w/ autoencoders

Celestial Sphere (RA/DEC):

Stars mapped via Right Ascension (RA) and Declination (DEC) analogous to

longitude/latitude on Earth

Celestial coordinates used to compute angular separations (edges) among connected

stars in a graph representation that preserves exact geometry and precision.
Figure: Visualization of RA/DEC on the celestial

sphere.

Methodology – Graph Construction

Celestial Sphere Graph Nodes & Edges:

Star data extracted from Hipparcos catalogue

Nodes = stars (RA, DEC, Vmag).

Edges = angular distance (Vincenty) < τ (3◦).

Filtering:

Exclude stars fainter than magnitude 6.0 (visible to naked eye /

simulated sensor threshold).

Remove isolated nodes (fewer than 2 neighbours).

Source Detection:

In real images, detect centroids → convert to angular measures.

Accurate absolute Vmag is challenging; use relative brightness

among direct neighbours (min-max).

Resulting Input Graph:

Each node’s feature = local relative magnitude (brightness

compared to direct neighbours).

Edges represent angular distance, min-max scaled.

Pattern radius = 3◦; 2-hop coverage = 6◦.

Final graph size: 4274 nodes, 20K edges.

Methodology – SIGNN Architecture
SIGNN Pipeline:

2 GAT layers → linear classifier

Multi-noise training: positional, dropped, false, magnitude

Nodes aggregate from neighbours’ features and edge features

(angular distances)

2-hop receptive field of 6◦

GAT (2-layer):
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i,j are learnable attention coefficients.

Attention Mechanism:

Each node attends to its neighbours

Learnable weights (αh
i,j) focus on important and reliable

connections

Figure: SIGNN architecture

Example: Sirius neighbourhood

Sirius (2-Hop neighbourhood):

Sirius is connected to its neighbourswithin 3◦, then those neighbours connect furtherwithin 3◦. The GAT layers aggregate these relationships

to correctly identify Sirius despite noise. Below, we show two perspectives: (a) the immediate 2-hop neighbourhood, and (b) a 10◦ FOV

subgraph centred on Sirius, showing an example sensor input.

(a) 2-Hop around Sirius, only connected nodes are

used in the representation of Sirius

(b) 10◦ FOV subgraph, simulated sensor input

Figure 1. Two visual perspectives of Sirius: a closer 2-hop neighbourhood vs. a wider 10◦ view.

RealWorld vs Noise Simulation

Noise Types:

Positional: shift star RA/DEC by random angular

distance offsets

Dropped: randomly remove stars (cloud,

occlusion)

False: insert false sources (aircraft, sensor noise)

Magnitude: perturb brightness by random %

Sensor Issue Detection Output Noise Simulation

Weather Missing stars Drop

Wrong mag Mag noise

Occlusion Missing stars Drop

Atmospheric Effects
Shift position Position noise

Vary mag Mag noise

Lens distortion Shift position Position noise

Lights Extra stars False

Table 1. Real-world issues → training noise.

Noise Simulation & Training
Training Details:

500 epochs, batch size = 64

Each epoch: 1024 variations of entire celestial sphere (20%

each noise + 20% no noise)

Parametric dataloader generates noisy samples during training.

Fast.

No need for large, static stored dataset

Bayesian optimization for hyperparams

Each star predicted on ≈ 480k times during training

Noise Type Start End Step

Position (Std Dev Radians) 0.0001 0.001 0.0001

Magnitude (%) 1% 10% 1%

False (%) 5% 50% 5%

Dropped (%) 5% 50% 5%

Table 2. Testing schema for noisy star recognition.

(a) Positional Noise (b) Dropped Star Noise (c) False Star Noise (d) Magnitude Noise

Figure 2. Four main noise types visualized.

Results & Noise Performance

Test Setup:

Generate random FOV-subgraphs (10◦) across the celestial sphere, simulating sensor views with random boresight and location.

20k images per noise type and level : 800k images, 28 million star predictions.

Comparisons: Classical (Grid), ML (RPNet, Spider).

(a) False noise (b) Positional noise (c) Dropped noise

Figure 3. SIGNN outperforms prior methods under high noise.

Discussion & FutureWork

Insights:

SIGNN yields high accuracy for star in FOV under

considerable noise conditions

Graph representation and angular-distance approach is

sensor-agnostic.

Future:

Edge-of-image problem: partial star patterns near FOV

boundary.

Extend to variable and fainter magnitude thresholds.

Creation of real image dataset + testing
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